Анализ плана профилактики незаразных болезней животных. Мероприятия по профилактике и ликвидации заразных болезней животных

Изгибом называется деформация стержня, сопровождающаяся изменением кривизны его оси. Стержень, работающий на изгиб, называется балкой .

В зависимости от способов приложения нагрузки и способов закрепления стержня могут возникать различные виды изгиба.

Если под действием нагрузки в поперечном сечении стержня возникает только изгибающий момент, то изгиб называют чистым .

Если в поперечных сечениях наряду с изгибающими моментами возникают и поперечные силы, то изгиб называют поперечным .


Если внешние силы лежат в плоскости, проходящей через одну из главных центральных осей поперечного сечения стержня, изгиб называется простым или плоским . В этом случае нагрузка и деформируемая ось лежат в одной плоскости (рис. 1).

Рис. 1

Чтобы балка могла воспринимать нагрузку в плоскости, она должна быть закреплена с помощью опор: шарнирно-подвижной, шарнирно-неподвижной, заделкой.

Балка должна быть геометрически неизменяемой, при этом наименьшее количество связей равно 3. Пример геометрически изменяемой системы приведен на рис.2а. Пример геометрически неизменяемых систем – рис. 2б, в.

а) б) в)

В опорах возникают реакции, которые определяются из условий равновесия статики. Реакции в опорах являются внешними нагрузками.

Внутренние усилия при изгибе

Стержень, нагруженный силами перпендикулярными продольной оси балки, испытывает плоский изгиб (рис. 3). В поперечных сечениях возникают два внутренних усилия: поперечная сила Q y и изгибающий момент М z .


Внутренние усилия определяются методом сечений. На расстоянии x от точки А плоскостью перпендикулярной оси X стержень рассекается на два участка. Отбрасывается одна из частей балки. Взаимодействие частей балки заменяется внутренними усилиями: изгибающим моментом M z и поперечной силой Q y (рис. 4).

Внутренние усилия M z и Q y в сечение определяются из условий равновесия.

Составляется уравнение равновесия для части С :

y = R A – P ­1 – Q y = 0.

ТогдаQ y = R A P ­1 .

Вывод. Поперечная сила в любом сечении балки равна алгебраической сумме всех внешних сил, лежащих по одну сторону от проведённого сечения. Поперечная сила считается положительной, если вращает стержень относительно точки сечения по часовой стрелке.

M 0 = R A x P 1 ∙ (x - a ) – M z = 0

Тогда M z = R A x P 1 ∙ (x a )


1. Определение реакций R A , R B ;

M A = P a R B l = 0

R B =

M B = R A ∙ e – P ∙ a = 0

2. Построение эпюр на первом участке 0 ≤ x 1 a

Q y = R A = ; M z = R A ∙ x 1

x 1 = 0 M z (0) = 0

x 1 = a M z (a) =

3. Построение эпюр на втором участке 0 ≤ x 2 b

Q y = - R B = - ; M z = R B x 2 ; x 2 = 0 M z (0) = 0 x 2 = b M z (b ) =

При построении M z положительные координаты будут откладываться в сторону растянутых волокон.

Проверка эпюр

1. На эпюре Q y разрывы могут быть только в местах приложения внешних сил и величина скачка должна соответствовать их величине.

+ = = P

2. На эпюре M z разрывы возникают в местах приложения сосредоточенных моментов и величина скачка равна их величине.

Дифференциальные зависимости между M , Q и q

Между изгибающим моментом, поперечной силой и интенсивностью распределённой нагрузки установлены зависимости:

q = , Q y =

где q – интенсивность распределённой нагрузки,

Проверка прочности балок при изгибе

Для оценки прочности стержня при изгибе и подбора сечения балки используются условия прочности по нормальным напряжениям.

Изгибающий момент представляет собой равнодействующий момент нормальных внутренних сил, распределённых по сечению.

s = ×y ,

где s – нормальное напряжение в любой точке поперечного сечения,

y – расстояние от центра тяжести сечения до точки,

M z – изгибающий момент, действующий в сечении,

J z – осевой момент инерции стержня.

Для обеспечения прочности рассчитываются максимальные напряжения, которые возникают в точках сечения, наиболее удалённых от центра тяжести y = y max

s max = ×y max ,

= W z и s max = .

Тогда условие прочности по нормальным напряжениям имеет вид:

s max = ≤ [s],

где [s] – допускаемое напряжение при растяжениях.

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой . Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой .

Изгиб называется плоским или прямым , если плоскость действия нагрузки проходит через главную центральную ось инерции сечения (рис.6.1).

Рис.6.1

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M . В раме при плоском поперечном изгибе возникают три усилия: продольная N , поперечная Q силы и изгибающий момент M .

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называетсячистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным . Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; попереч­ный изгиб относят к простым видам сопротивления условно, так как в большинстве слу­чаев (для достаточно длинных балок) действием поперечной силы при расчетах на проч­ность можно пренебречь.

22.Плоский поперечный изгиб. Дифференциальные зависимости между внутренними усилиями и внешней нагрузкой. Между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки существуют дифференциальные зависимости, основанные на теореме Журавского, названной по имени русского инженера-мостостроителя Д. И. Журавского (1821-1891 г.г.).

Эта теорема формулируется так:

Поперечная сила равна первой производной от изгибающего момента по абсциссе сечения балки.

23. Плоский поперечный изгиб. Посторение эпюр поперечных сил и изгибающих моментов. Определение поперечных сил и изгибающих моментов - сечение 1

Отбросим правую часть балки и заменим ее действие на левую часть поперечной силой и изгибающим моментом. Для удобства вычисления закроем отбрасываемую правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением 1.

Поперечная сила в сечении 1 балки равна алгебраической сумме всех внешних сил, которые видим после закрытия

Видим только реакцию опоры, направленную вниз. Таким образом, поперечная сила равна:

кН.

Знак «минус» нами взят потому, что сила вращает видимую нами часть балки относительно первого сечения против хода часовой стрелки (или потому, что одинаково направлена с направлением поперечной силы по правилу знаков)

Изгибающий момент в сечении 1 балки, равен алгебраической сумме моментов всех усилий, которые мы видим после закрытия отброшенной части балки, относительно рассматриваемого сечения 1.

Видим два усилия: реакцию опоры и момент M. Однако у силыплечо практически равно нулю. Поэтомуизгибающий момент равен:

кН·м.

Здесь знак «плюс» нами взят потому, что внешний момент M изгибает видимую нами часть балки выпуклостью вниз. (или потому, что противоположно направлен направлению изгибающего момента по правилу знаков)

Определение поперечных сил и изгибающих моментов - сечение 2

В отличие от первого сечения, у силы реакциипоявилось плечо, равное а.

поперечная сила:

кН;

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 3

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 4

Теперь удобнее закрывать листком левую часть балки .

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 5

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 1

поперечная сила и изгибающий момент:

.

По найденным значениям производим построение эпюры поперечных сил (рис. 7.7, б) и изгибающих моментов(рис. 7.7, в).

КОНТРОЛЬ ПРАВИЛЬНОСТИ ПОСТРОЕНИЯ ЭПЮР

Убедимся в правильности построения эпюр по внешним признакам, пользуясь правилами построения эпюр.

Проверка эпюры поперечных сил

Убеждаемся: под незагруженными участками эпюра поперечных сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклоненной вниз прямой. На эпюре продольной силы три скачка: под реакцией– вниз на 15 кН, под силой P – вниз на 20 кН и под реакцией– вверх на 75 кН.

Проверка эпюры изгибающих моментов

На эпюре изгибающих моментов видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой q эпюра изгибающих моментов изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре изгибающего момента – экстремум, поскольку эпюра поперечной силы в этом месте проходит через нулевое значение.

10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскоcтями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом Mo; во втором – сосредоточенной силой F.

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент Мz и поперечная сила Qy (или при изгибе относительно другой главной оси – изгибающий момент Мy и поперечная сила Qz).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Qy считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;



2) изгибающий момент Мz считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M, знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M≡Mz, Q≡Qy.

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx. Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль

оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q+dQ, а также изгибающие моменты M и M+dM. Из условия равновесия выделенного элемента получим

Первое из двух записанных уравнений дает условие

Из второго уравнения, пренебрегая слагаемым q·dx·(dx/2) как бесконечно малой величиной второго порядка, найдем

Рассматривая выражения (10.1) и (10.2) совместно можем получить

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил: а – на участках, где нет распределенной нагрузки q, эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми; б – на участках, где к балке приложена распределенная нагрузка q, эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами.

При этом, если эпюру М строим «на растянутом волокне», то выпуклость параболы будет направлена по направлению действия q, а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию; в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпюре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q>0, момент М возрастает, а на участках, где Q<0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая.

Отметим, что в теории упругости можно получить точную зависи-мость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли) – сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряжений – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – соседние продольные волокна не давят друг на друга.

Статическая сторона задачи

Чтобы определить напряжения в поперечных сечениях балки, рассмотрим, прежде всего, статическую сторон у задачи. Применяя метод мысленных сечений и составляя уравнения равновесия для отсеченной части балки, найдем внутренние усилия при изгибе. Как было показано ранее, единственным внутренним усилием, действующим в сечении бруса при чистом изгибе, является внутренний изгибающий момент, а значит здесь возникнут связанные с ним нормальные напряжения.

Связь между внутренними усилиями и нормальными напряжениями в сечении балки найдем из рассмотрения напряжений на элементарной площадке dA, выделенной в поперечном сечении A балки в точке с координатами y и z (ось y для удобства анализа направлена вниз):

Как видим, задача является внутренне статически неопределимой, так как неизвестен характер распределения нормальных напряжений по сечению. Для решения задачи рассмотрим геометрическую картину деформаций.

Геометрическая сторона задачи

Рассмотрим деформацию элемента балки длиной dx, выделенного из изгибаемого стержня в произвольной точке с координатой x. Учитывая принятую ранее гипотезу плоских сечений, после изгиба сечения балки повернуться относительно нейтральной оси (н.о.) на угол dϕ, при этом волокно ab, отстоящее от нейтральной оси на расстояние y, превратится в дугу окружности a1b1, а его длина изменится на некоторую величину. Здесь напомним, что длина волокон, лежащих на нейтральной оси, не изменяется, а потому дуга a0b0 (радиус кривизны которой обозначим ρ) имеет ту же длину, что и отрезок a0b0 до деформации a0b0=dx.

Найдем относительную линейную деформацию εx волокна ab изогнутой балки:

Изгиб



Основные понятия об изгибе

Деформация изгиба характеризуется потерей прямолинейности или первоначальной формы линией балки (ее осью) при приложении внешней нагрузки. При этом, в отличие от деформации сдвига, линия балки изменяет свою форму плавно.
Легко убедиться, что на сопротивляемость изгибу влияет не только площадь поперечного сечения балки (бруса, стержня и т. д.), но и геометрическая форма этого сечения.

Поскольку изгиб тела (балки, бруса и т. п.) осуществляется относительно какой-либо оси, на сопротивляемость изгибу влияет величина осевого момента инерции сечения тела относительно этой оси.
Для сравнения - при деформации кручения сечение тела подвергается закручиванию относительно полюса (точки), поэтому на сопротивление кручению оказывает влияние полярный момент инерции этого сечения.

На изгиб могут работать многие элементы конструкций – оси, валы, балки, зубья зубчатых колес, рычаги, тяги и т. д.

В сопротивлении материалов рассматривают несколько типов изгибов:
- в зависимости от характера внешней нагрузки, приложенной к брусу, различают чистый изгиб и поперечный изгиб ;
- в зависимости от расположения плоскости действия изгибающей нагрузки относительно оси бруса - прямой изгиб и косой изгиб .

Чистый и поперечный изгиб балки

Чистым изгибом называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только изгибающий момент (рис. 2 ).
Деформация чистого изгиба будет, например, иметь место, если к прямому брусу в плоскости, проходящей через ось, приложить две равные по величине и противоположные по знаку пары сил. Тогда в каждом сечении бруса будут действовать только изгибающие моменты.

Если же изгиб имеет место в результате приложения к брусу поперечной силы (рис. 3 ), то такой изгиб называется поперечным . В этом случае в каждом сечении бруса действует и поперечная сила, и изгибающий момент (кроме сечения, к которому приложена внешняя нагрузка).

Если брус имеет хоть одну ось симметрии, и плоскость действия нагрузок совпадает с ней, то имеет место прямой изгиб , если же это условие не выполняется, то имеет место косой изгиб .

При изучении деформации изгиба будем мысленно представлять себе, что балка (брус) состоит из бесчисленного количества продольных, параллельных оси волокон.
Чтобы наглядно представить деформацию прямого изгиба, проведем опыт с резиновым брусом, на котором нанесена сетка продольных и поперечных линий.
Подвергнув такой брус прямому изгибу, можно заметить, что (рис. 1 ):

Поперечные линии останутся при деформации прямыми, но повернутся под углом друг другу;
- сечения бруса расширятся в поперечном направлении на вогнутой стороне и сузятся на выпуклой стороне;
- продольные прямые линии искривятся.

Из этого опыта можно сделать вывод, что:

При чистом изгибе справедлива гипотеза плоских сечений;
- волокна, лежащие на выпуклой стороне растягиваются, на вогнутой стороне – сжимаются, а на границе между ними лежит нейтральный слой волокон, которые только искривляются, не изменяя своей длины.

Полагая справедливой гипотезу о не надавливании волокон, можно утверждать, что при чистом изгибе в поперечном сечении бруса возникают только нормальные напряжения растяжения и сжатия, неравномерно распределенные по сечению.
Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной осью . Очевидно, что на нейтральной оси нормальные напряжения равны нулю.

Изгибающий момент и поперечная сила

Как известно из теоретической механики, опорные реакции балок определяют, составляя и решая уравнения равновесия статики для всей балки. При решении задач сопротивления материалов, и определении внутренних силовых факторов в брусьях, мы учитывали реакции связей наравне с внешними нагрузками, действующими на брусья.
Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией – осью, к которой приложены активные и реактивные силы (нагрузки и реакции связей).

Рассмотрим два случая:

1. К балке приложены две равные и противоположные по знаку пары сил.
Рассматривая равновесие части балки, расположенной слева или справа от сечения 1-1 (рис. 2 ), видим, что во всех поперечных сечениях возникает только изгибающий момент М и , равный внешнему моменту. Таким образом, это случай чистого изгиба.

Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.

Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.


2. К балке приложены активные и реактивные силы (нагрузки и реакции связей), перпендикулярные оси (рис. 3 ). Рассматривая равновесие частей балки, расположенных слева и справа, видим, что в поперечных сечениях должны действовать изгибающий момент М и и поперечная сила Q .
Из этого следует, что в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту, но и касательные, соответствующие поперечной силе.

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки.

Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.

Изгиб, при котором в поперечном сечении балки действуют изгибающий момент и поперечная сила, называется поперечным .



У балки, находящейся в равновесии вод действием плоской системы сил, алгебраическая сумма моментов всех активных и реактивных сил относительно любой точки равна нулю; следовательно, сумма моментов внешних сил, действующих на балку левее сечения, численно равна сумме моментов всех внешних сил, действующих на балку правее сечения.
Таким образом, изгибающий момент в сечении балки численно равен алгебраической сумме моментов относительно центра тяжести сечения всех внешних сил, действующих на балку справа или слева от сечения .

У балки, находящейся в равновесии под действием плоской системы сил, перпендикулярных оси (т. е. системы параллельных сил), алгебраическая сумма всех внешних сил равна нулю; следовательно сумма внешних сил, действующих на балку левее сечения, численно равна алгебраической сумме сил, действующих на балку правее сечения.
Таким образом, поперечная сила в сечении балки численно равна алгебраической сумме всех внешних сил, действующих справа или слева от сечения .

Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно: Если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис 4,a ).

Если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 4,b ). Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемлённым, а связи отброшенными и замененными реакциями.

Еще раз отметим, что для определения реакций связей пользуются правилами знаков статики, а для определения знаков изгибающего момента и поперечной силы – правилами знаков сопротивления материалов.
Правило знаков для изгибающих моментов иногда называют "правилом дождя" , имея в виду, что в случае выпуклости вниз образуется воронка, в которой задерживается дождевая вода (знак положительный), и наоборот – если под действием нагрузок балка выгибается дугой вверх, вода на ней не задерживается (знак изгибающих моментов отрицательный).

Материалы раздела "Изгиб":

1. Принципы организации общей и специфической профилактики инфекционных болезней.

2. Специфические средства и методы иммунопрофилактики.

3. Стратегия оздоровительных мероприятий и ликвидации инфекционных болезней.

Таблицы- слайды.

1. Типы (виды вакцин)

2. Особенности 4-х типов вакцин и их действие.

3. Способы введения вакцин.

4. Комплексный метод диагностики инфекционных болезней.

5. Лабораторная диагностика инфекционных болезней.

6. Виды диагнозов.

7. Карантинные болезни.

8. Ограничительные болезни.

Литература.

1. Общая и специфическая профилактика инфекционных болезней.

Профилактика – система мероприятий обеспечивающих предупреждение возникновения и распространения ИБ в хозяйствах и стране в целом.

Учитывая сложность этой государственной задачи и необходимость ее решения различными методами общей и специальной направленности профилактические мероприятия условно разделяют на Общие и специальные (специфические).

Общая профилактика – комплекс организационно-хозяйственных и ветеринарно-санитарных мер направленных на профилактику ИБ.

Эти мероприятия по предупреждению (профилактике) возникновения ИБ направлены на решение 4 основных задач:

· Охрана страны от заноса возбудителей ИБ из вне.

· Охрана хозяйств от заноса возбудителей ИБ из неблагополучных пунктов.

· Проведение мероприятий по повышению общей резистентности.

· Повышение ветеринарно-санитарной культуры ведения животноводства.

· Мы ранее подробно говорили об этих вопросах, сейчас лишь напоминаю.

Общая профилактика включает в себя комплекс следующих основных мероприятий:

1. Периодические (не реже 1 раза в мес.) клинические осмотры животных, диспансеризация (2 раза в год), своевременное выявление и изоляция больных животных.

2. Профилактическое карантинирование (30 дней) вновь поступающих животных.

3. Плановые исследования животных (туберкулез 1-2 раза в год, бруцеллез 1 раз в год, сап, лейкоз, лептоспироз, и т. д. в зависимости от зоны).

4. Профилактические очистка и дезинфекция территорий (не реже 1 раза в год).

5. Закрытый тип работы крупных животноводческих предприятий, соблюдение принципа «пусто-занято».

6. Организация контроля на станциях ИО животных.

7. Контроль за состоянием пастбищ и их санация.

8. Организация контроля содержания, кормления, поения и эксплуатации животных.

9. Меропритяи по борьбе с переносчиками (дезинсекция и дератизация).

10. Контроль за перемещением животных.

11. Своевременная уборка и утилизация трупов, отходов животноводства и навоза.

Характер действия общих профилактических мероприятий универсален для всех ИБ, поэтому они должны проводится повсеместно и постоянно.

Специфическая профилактика – специальная система мер, направленных на предупреждения появления конкретных ИБ.

Характер специфических профилактических мероприятий определяется особенностями отдельных болезней, эпизоотической обстановкой хозяйства и его окружения.

К специфической профилактике относятся:

· Проведение Специальных диагностических исследований (Включая карантинирование, изоляцию, уточнение диагноза).

· Применение Лечебно-профилактических средств специального направления (премиксы, аэрозоли, иммуномодуляторы, кормовые антибиотики, пробиотики и пр.).

· Иммунопрофилактика с использованием специфических средств – вакцин, сывороток, иммуноглобулинов.

Система общих и специфических профилактических мероприятий внутри хозяйств сводится в целом к 3-м направлениям.

1. Селекционно-генетическое – создание пород, линий и т. д. устойчивых к ИБ.

2. Повышение естественной резистентности.

3. Специфическая профилактика – профилактическая вакцинация.

(Раскрыть перспективность каждого направления)

Профилактическая (предохранительная) вакцинация – проведение прививок в благополучном хозяйстве с целью создания иммунитета на случай возможного заражения животных впоследствии. (В Украине обязательны прививки против ряда болезней вне зависимости от угрозы заражения.

В соответствии с этим в каждом благополучном по ИБ хозяйстве разрабатываются планы ветеринарно-профилактических и специальных противоэпизоотических мероприятий (о чем мы подробнее говорили на предыдущей лекции).

2. Специфические средства и методы иммунопрофилактики.

В основе метода специфической иммунопрофилактики лежит феномен иммунитета, о котором мы говорили ранее. Этот метод строго специфичен для ИБ (отсюда и название специфическая профилактика).

В настоящее время против большинства ИБ разработаны эффективные биопрепараты позволяющие защищать животных от заболеваний.

Вакцинация (иммунизация) животных прочно вошла в комплекс противоэпизоотических мероприятий и ветеринарную практику. При некоторых болезнях она является главным и наиболее эффективным методом. (в частности при СЯ, эмкаре, ящуре, листериозе, роже, чуме и др.).

Различают 3 вида вакцинации в зависимости от способа формирования иммунитета.

· Активная – применение вакцин, при этом иммунитет вырабатывается самим организмом.

Вакцины – антигенные препараты полученные из микроорганизмов, их компонентов или продуктов жизнедеятельности.

· Пассивная – применение сывороток или иммуноглобулинов, при этом готовые антитела (полученные при иммунизации других животных - продуцентов) вводятся в организм.

· Смешанная (пассивно-активная) – при которой вначале проводится пассивная вакцинация, а через некоторое время активная. Одновременное применение вакцин и сывороток (симультанные прививки) в настоящее время не применяются поскольку известно, что пассивные антитела в организме отрицательно влияют на формирование активного иммунитета.

Живые вакцины наиболее эффективны – быстрое формирование иммунитета, малые дозы антигена, как правило однократная вакцинация. Отрицательная сторона – реактогенность и остаточная вирулентность (возможны поствакцинальные осложнения и заболевание части животных, особенно инкубатиков). Применяются широко (СЯ, бруцеллез, туберкулез и др.)

Инактивированные вакцины (фенол - формол - гретые, спиртовые) как правило менее эффективны, чем живые. Они требуют как правило введения больших доз, повторных вакцинаций, для усиления депонирующих веществ (адъювантов), но более безопасные.

Субъединичные и генноинженерные вакцины используются в ветеринарии еще не достаточно широко (сальмонеллез, колибактериоз, бруцеллез, ящур).

Виды вакцин

Инактивирован-ные (убитые)

Субъединичные

(химические)

Генноинженерные

Полученные из живых ослабленных аттенуированных штаммов микроорганизмов которые сохранили антегенные свойства, но почти утратили вирулентность

Полученные путем инактивации (умервщления) микроорганизмов без их разрушения

Состоящие из антигенов, полученных путем извлечения из микроорганизмов различных антигенных фракций: полисахаридов, белков, поверхностных и оболочковых антигенов

Продукты молекулярной биологии и генной инженерии путем синтеза антигенов или введения генома в другие клетки

Моновалентные

Поливалентные

Ассоциированные

Вирусные

Культуральные

Эмбриональные

Тканевые

Бактериальные

Бактерина

Анатоксины

Формолвакцины

Фенолвакцины

Спиртовые

Депонированные:

Квасцовые

ГОА-вакцины

Эмульгированные

Методы пассивной иммунизации:

· Введение сывороток – серопрофилактика .

· Введение иммуноглобулинов (концентрированных антител). Преимущества больше антител, меньше балласта, меньше реактогенность.

· Колостральная иммунизация – Активная иммунизация матерей, но передача их с молозивом потомству пассивно. Примеры: колибактериоз, сальмонеллез, вирусные болезни.

Сроки формирования и длительность иммунитета:

При введении вакцин иммунитет формируется в сроки от 5 до 30 дней и сохраняется от 6 мес до 2 лет (в зависимости от вида вакцины).

При введении сывороток иммунитет формируется в течении 1-3 сут, о сохраняется 2-3 недели.

При колостральной иммунизации иммунитет сохраняется до 1-1,5 мес.

Организация и проведение прививок. Соблюдают 6 следующих правил:

1. Прививки животным проводятся в строгом соответствии с Наставление по применению Препарата, в котором оговорены способ и место введения, доза, кратность вакцинации, возможные побочные реакции, и др.

2. Перед вакцинацией определяют годность препаратов к применению (по внешнему виду, целостности упаковки и укупорки, наличию примесей).

3. При вакцинации особое внимание обращают на животных больных, ослабленных, истощенных, беременных или в первые дни после родов. В ряде случаев их не вакцинируют.

4. При проведении прививок соблюдают правила асептики и антисептики.

5. После вакцинации составляется акт.

6. За привитыми животными устанавливается наблюдение при появлении осложнений в ряде случаев проводят соответствующую терапию и предъявляют рекламацию предприятию-изготовителю биопрепарата.

4. Оздоровительные мероприятия и ликвидация инфекционных болезней.

При возникновении ИБ решающее значение имеет установление какая именно это болезнь и выявление всех ИВИ (т. е. оценка 1-го звена ЭЦ и воздействие на него, как мы говорили ранее). Эти вопросы решаются с помощью Диагностики.

Диагноз на ИБ устанавливается комплексно.

Без лабораторной диагностики окончательный диагноз не ставится.

При комплексном методическом подходе, тем не менее должен быть обязательно использован основной (решающий) метод диагностики для постановки окончательного диагноза.

Чаще всего это Обнаружение и идентификация возбудителя в патологическом материале, что подтверждает предварительный диагноз . Иногда бывает достаточно биопробы, результатов серологических исследований, аллергических исследований, патологоанатомического вскрытия, что определяется инструкциями по отдельным болезням.

Однако отрицательный результат не всегда позволяет исключить болезнь, возможно понадобятся повторные, дополнительные исследования. Т. е. действует принцип: ДА à ДА, НЕТ à не всегда НЕТ.

В каждом ЭО ИБ (неблагополучном хозяйстве) необходимо проводить мероприятия обеспечивающие уничтожение возбудителей и исключение возможности появления новых случаев заболевания и распространение его за пределы ЭО, воздействуя на все 3 звена ЭЦ.

При обнаружении ИБ, хозяйство (пункт) объявляется неблагополучным и накладывается карантин (ограничения, или ни то ни другое, в зависимости от того какая это болезнь).

Карантин – система противоэпизоотических мероприятий направленных на полное разделение неблагополучных животных и территорий их размещения, с целью ликвидации болезни и исключения возможности ее распространения за пределы ЭО.

Список карантинных болезней представлен в таблице (ТАБЛИЦА).

Ограничения – менее строгая система разделения используемая при ИБ не имеющих тенденции к широкому эпизоотическому распространению.

Список ограничительных болезней представлен в таблице (ТАБЛИЦА).

Решение о наложении (введении) карантина или ограничений принимают местные органы власти по представлению ветеринарной службы и порядок этот определяется соответствующими инструкциями.

При некоторых особо опасных болезнях: ящур, СЯ, чума КРС и верблюдов, АЧС – Вокруг карантинируемой зоны устанавливается угрожаемая зона.

По условиям карантина запрещается:

· ввоз (ввод) и вывоз (вывод) из неблагополучной зоны восприимчивых животных,

· выпас скота и вывоз продукции, фуража и сырья животного происхождения,

· проезд через неблагополучные пункты,

· поведение выставок, ярмарок, базаров, перегруппировка животных внутри хозяйства,

· на дорогах ведущих в неблагополучный пункт устанавливают посты, специальные указатели, шлагбаумы, дезбарьеры, и пр.

Срок действия карантина или ограничений при оздоровлении определяют длительностью инкубационного периода и микробоносительства после переболевания. Они снимаются после полного выздоровления (убоя, падежа) последнего животного, проведения заключительных ветеринарно-санитарных мероприятий, тщательной очистки и дезинфекции и по истечении срока определенного соответствующими инструкциями.

Ответственность за соблюдение карантинных и ограничительных мероприятий возлагается на руководителей хозяйств и местные органы власти, а за организацию и проведение специальных противоэпизоотических мероприятий – на ветеринарную службу.

При наложении карантина (ограничений) применяется Изоляция животных , т. е. разделение больных и подозрительных в заболевании от остальных условно-здоровых. Для этого в хозяйствах (фермах) должны быть оборудованы изоляторы (из расчета размещения % от взрослого поголовья). Изоляция может быть групповой или индивидуальной.

В борьбе с ИБ также важное значение имеет Специфическая профилактика (вакцинация). Но в отличие от предохранительных (профилактических) прививок в благополучных хозяйствах, в неблагополучных – она называется Вынужденной вакцинацией. Для нее применяют те же средства и методы, с той разницей, что при ряде болезней необходимо исследовать животных перед прививками для исключения микробоносителей.