Анатомия и физиология среднего уха. Методы исследования, клиническая анатомия и физиология наружного и среднего уха

Анатомия и физиология внутреннего уха. Строение слухового и статокинетического анализаторов.

Внутреннее ухо располагается в толще пирамиды височной кости между барабанной полостью и внутренним слуховым проходом. Различают костный и перепончатый лабиринты, причем перепончатый лабиринт располагается внутри костного.

Костный лабиринт (рис.7) состоит из мелких сообщающихся полостей: преддверия, полукружных каналов, улитки .

Преддверие образует среднюю часть лабиринта, по своей форме овальное, сзади пятью отверстиями сообщается с полукружными каналами, а спереди – более широким отверстием с каналом улитки. На боковой стенке преддверия имеются два отверстия: окно преддверия и окно улитки. Первое занятое пластинкой стремени, через которое передается механическое колебание из барабанной полости, а второе - эластичной мембраной, на которой гасится это колебание. Полость преддверия посредством костного гребня делится на два углубления: эллиптическое, соединяющее преддверие с полукружными каналами, и сферическое, которое соединяется с костным спиральным каналом улитки.

Костные полукружные каналы – три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях: передний лежит вертикально и обращен кпереди; задний тоже вертикальный, но лежит кзади; третий горизонтальный. У каждого канала две ножки, которые открываются в преддверие пятью отверстиями в виде ампул.

Улитка (рис.8) образована спиральным костным каналом, идущим вокруг костного стержня и образующим 2,5 завитка, напоминающим речную улитку. На протяжении всех ее оборотов от стержня в полость канала улитки отходит спиральная костная пластина , которая делит полость канала на две лестницы – лестницу преддверия и барабанную лестницу .

Перепончатый лабиринт повторяет контур костного и содержит в себе периферические отделы анализаторов слуха и гравитации (рис.9). Стенки его образованы тонкой полупрозрачной соединительнотканной перепонкой.

Внутри лабиринта находится прозрачная жидкость эндолимфа . Между стенками костного и перепончатого лабиринтов остается промежуток – перилимфатическое пространство , наполненное перилимфой . В преддверии перепончатый лабиринт представлен эллиптическим и сферическим мешочками , лежащими в соименных костных ямках. Эллиптический мешочек соединяется сзади с тремя перепончатыми полукружными каналами , сферический – с улитковым протоком . Оба мешочка соединены внутрилимфатическим протоком , который выходит в полость черепа и образует там цистерну , куда выходит лишняя эндолимфа при повышении эндолимфатического давления или оттекает в нее при недостаче эндолимфы.



Самой существенной частью органа слуха является улитковый проток , начинающийся слепым концом в преддверии, идущий по всему спиральному каналу костной улитки и оканчивающийся слепо в ее верхушке. Спиральная мембрана с заложенной в ней базилярной пластиной несет спиральный орган (Кортиев) – аппарат, воспринимающий звуки (рис.10).

Последний располагается вдоль всего улиткового протока на базальной пластине, состоящей из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны (слуховые струны). Они по теории Гельмгольца являются резонаторами, обуславливающие своими колебаниями восприятие тонов различной высоты. Сам спиральный орган слагается из нескольких рядов рецепторных клеток, имеющих по 30-120 тонких волосков, микроворсинок, которые свободно заканчиваются в эндолимфе. Над волосковыми клетками на всем протяжении улиткового протока расположена подвижная покровная мембрана .

Восприятие звука. Звук в виде колебаний воздуха концентрируется ушной раковиной и направляется в наружный слуховой проход на барабанную перепонку, которая под воздействием воздушной волны колеблется. Звук воспринимается тем сильнее, чем больше величина колебаний звуковых волн и барабанной перепонки. Высота звука зависит от частоты колебаний звуковых волн. Большая частота колебаний в единицу времени будет восприниматься органом слуха в виде более высоких тонов (тонкие, высокие звуки). Меньшая частота колебаний звуковых волн воспринимается в виде низких тонов (басистые, грубые звуки). Человеческое ухо воспринимает звуки в значительных пределах: от 16 до 20000 колебаний в секунду; у лиц пожилого возраста – не более 13000 – 15000 колебаний. Колебания барабанной перепонки передаются на цепь косточек, а со стремени – на перилимфу преддверия. Далее колебания перилимфы идут по лестнице преддверия, затем по слуховой лестнице, передавая колебания базальной мембране улитки и эндолимфе улиткового протока. При этом колеблется покровная пластина и с определенной силой и частотой касается микроворсинок рецепторных клеток, которые приходят в состояние возбуждения – возникает рецепторный потенциал (нервный импульс). Импульс передается на тела 1 нейронов, лежащих в спиральном узле, а их аксоны идут к собственным двум ядрам (2-ой нейрон) варолиева моста, формируя корешок слуховой части предверно-улиткового нерва . Оттуда нервный импульс передается на 3-й нейрон, находящийся в задних бугорках пластины четверохолмия, а затем – в талямус (4-й нейрон). Через медиальные коленчатые тела метаталямуса импульс поступает в верхнюю височную извилину, ее среднюю и заднюю части, где локализуются высшие нервные центры слуха и слуховой речи (рис.11).

Орган гравитации и равновесия (вестибулярный аппарат ) начинается в перепончатом лабиринте на внутренней поверхности эллиптического, сферического мешочков и пяти ампул полукружных каналов, выстланных плоским эпителием. Отдельные участки его сформированы в виде белых пятен в мешочках и гребешков в ампулах, состоящих из скопления чувствительных волосковых клеток. На волосках чувствительных клеток находится студенистая масса с кристаллами углекислого кальция (отолитовая мембрана).

При изменении положения головы или тела в пространстве происходит движение эндолимфы в мешочках и ампулах, что вызывает смещение отолитовых мембран. Смещаясь, желеобразная масса раздражает волоски чувствительных клеток и в рецепторах возникает нервный импульс, который передается к телам первых нейронов, лежащих в вестибулярном ганглии. Их аксоны формируют корешок второй части предверно-улиткового нерва. Затем раздражение поступает в варолиев мост к телам собственных 2-х нейронов и по их аксонам далее в мозжечок (3-нейрон). Отсюда путь гравитации и равновесия идет в таламус (4 нейрон) и далее в среднюю часть средней височной извилины, где человек получает и анализирует информацию об изменении и положении тела в пространстве (рис 10).

Cреднее ухо (а), верхняя и внутренняя стенки барабанной полости (б)а
б

Наружная стенка барабанной полости и сосцевидная пещера

2
1
10
3
4
9
7
8
6
5
1 - надбарабанное
углубление;
2 - сосцевидная пещера;
3 - сосцевидный отросток;
4 - нисходящее колено
лицевого нерва;
5 - сигмовидный синус;
6 - луковица внутренней
яремной вены;
7 - внутренняя сонная
артерия;
8 - слуховая труба;
9 - барабанная перепонка;
10 - головка молоточка

Отделы барабанной полости

Барабанная полость:
1 - наружный слуховой
проход;
2 - пещера;
3 - эпитимпанум;
4 - лицевой нерв;
5 - лабиринт;
6 - мезотимпанум;
7, 8 - слуховая труба;
9 - яремная вена

Связь среднего уха с полостью носа и носоглоткой

Барабанная перепонка и цепь слуховых косточек

2
5
6
3
1
4
1-
2-
3-
5-
7
натянутая часть барабанной перепонки;
ненатянутая часть барабанной перепонки;
рукоятка молоточка; 4 - световой конус;
молоточек; 6 - наковальня; 7 - стремя

Слуховые косточки

Внутреннее ухо: вестибулярные рецепторы расположены в ампулах полукружных каналов и мешочках преддверия

4
9
5
8
3
1
6
10
2
7
1 - улитка;
2 - преддверие;
3, 4, 5 - горизонтальный,
фронтальный и
сагиттальный полукружные
каналы;
6 - окно преддверия;
7 - окно улитки;
8, 9, 10 - ампулы
горизонтального,
фронтального и
сагиттального полукружных
каналов

Внутреннее ухо (ушной лабиринт)

Фронтальный разрез улитки (а) и спиральный орган (б) а б

Схема движения перилимфы и расположения рецепторов в улитке

Строение отолитового рецептора вестибулярного аппарата

Волоски
чувствительных
клеток вместе с
отолитами и
желеобразной
массой образуют
отолитовую
мембрану

Схема проведения звуковой волны

Основные свойства слухового анализатора.

Слуховой анализатор позволяет
дифференцировать звуки:
по
высоте (частоте) - диапазон
восприятия от 16 до 20 000 Гц.
по громкости (интенсивности) звука - от
1 до 140 дБ.
по тембру (индивидуальной окраске)
звука.

Громкость звука

Громкость
звука отражает его интенсивность,
т. е. энергию, переносимую звуковой волной к
единице поверхности (вт/см2). Диапазон между
порогом восприятия и максимально
переносимым давлением равняется 1014 и
измеряется миллиардными величинами.
Единицей измерения уровня громкости принято
считать бел - десятичный логарифм отношения
интенсивности данного звука к пороговому его
уровню.
Децибел - 0,1 десятичного логарифма.
Тогда диапазон слухового восприятия - от 0 до
130 дБ.

Дополнительные свойства слухового анализатора:

Адаптация
- физиологическое
приспособление органа слуха к силе звукового
раздражителя. Под влиянием сильных звуков
чувствительность уха снижается, а в тишине,
наоборот, обостряется. От адаптации следует
отличать утомление слухового анализатора.
Ототопика
- способность определять
направление источника звука. Ототопика
возможна лишь при бинауральном слухе.

Слуховой анализатор состоит из следующих основных частей:

периферического
отдела -
наружного, среднего и внутреннего уха
(до спирального органа);
проводящих путей;
центрального (коркового) отдела
анализатора.

Звукопроводящая и звуковоспринимающая системы:

5
3
1
4
2
6
7
1 - наружное ухо; 2 - среднее ухо; 3 - внутреннее
ухо;
4 - проводящие пути; 5 - корковый центр;
6 - звукопроводящий аппарат;
7 - звуковоспринимающий аппарат

Понятие о сенсоневральной и кондуктивной тугоухости

Основные функции слухового анализатора:
Звукопроведение - доставка звуковой энергии к
рецепторам улитки.
Звуковосприятие - трансформация физической
энергии звуковых колебаний в нервные импульсы,
проведение их до центров в коре головного мозга,
анализ и осмысливание звуков.
Соответственно различают звукопроводящий и
звуковоспринимающий отделы анализатора, а при
их патологии - кондуктивную (звукопроводящую) и
сенсоневральную (нарушение звуковосприятия)
тугоухость.

Исследование функций слухового анализатора

Субъективные методы:
Звукореактотест
Исследование восприятия шепотной и
разговорной речи
Камертональное исследование
Аудиометрия (тональная пороговая и
надпороговая, речевая, шумовая)
Объективные методы
(электрофизиологические методы
регистрации реакции на звук):
Регистрация отоакустической эмиссии
Регистрация слуховых вызванных потенциалов
Импедансометрия

Слуховой паспорт (результаты камертонального исследования) больного с правосторонней кондуктивной тугоухостью

Правое ухо (AD)
Тесты
Левое ухо (AS)
+
СШ

ШР


РР

35 с
С128 (В=90 с)
90 с
52 с
С128 (К=50 с)
50 с
23 с
С 2048 (40 с)
37 с
-- (отр.)
Опыт Ринне (R)
+
Опыт Вебера (W)
-- (отр.)
Опыт Желле (G)
+
Заключение: имеется снижение слуха справа по типу
нарушения звукопроведения.

Аудиограмма при нормальном слухе

Кривые
воздушной и
костной
проводимости
совпадают и
расположены
около линии 0–10
дБ

Аудиограмма при кондуктивной тугоухости

Повышение
порогов
восприятия звуков
по воздушной
проводимости;
слуховые пороги
по костной
проводимости не
изменены
Имеется костновоздушный разрыв
- «резерв улитки»

Аудиограмма при нейросенсорной тугоухости

Воздушная и
костная
проводимость
нарушены в
одинаковой
степени;
костно-воздушный
разрыв
отсутствует.
Нарушено
восприятие
преимущественно
высоких тонов -
нисходящая
кривая

Аудиограмма при смешанной тугоухости

Наряду с повышением
порогов костного
проведения имеется
костно-воздушный
разрыв - потеря
слуха при воздушной
проводимости
превосходит потерю
при костном
проведении

Схема акустического импедансометра и тимпанограмма

Различные классы слуховых вызванных потенциалов (СВП)

Вестибулярные реакции

Вестибулосенсорные
Vestibulocorticalis).
(tr.
Вестибулосоматические
(через tractus
vestibulospinalis, tr. vestibulocerebellaris,
tr. Vestibulolongitudinalis).
Вестибуловегететивные
(tr. Vestibuloreticularis).

Нистагм – непроизвольные движения глазных яблок. Вестибулярный (лабиринтный) нистагм - непроизвольные ритмические движения глазных ябло

Нистагм – непроизвольные движения глазных
яблок.
Вестибулярный (лабиринтный) нистагм
- непроизвольные ритмические движения
глазных яблок, в которых различают быстрый
и медленный компоненты.
Присхождение медленного компонента
связывают с деятельностью рецепторов или
вестибулярных ядер, быстрого - с
функционированием кортикальных или
субкортикальных структур мозга.

Адекватные раздражители вестибулярного анализатора:

Для
ампулярных рецепторов: угловое
ускорение, ускорение Кориолиса.
Для отолитовых рецепторов:
прямолинейное ускорение, гравитация,
ускорение Кориолиса.

Вестибулярный нистагм по природе различают спонтанный или индуцированный

Нистагм визуально оценивают:
по направлению: вправо, влево, вверх,
вниз;
- по плоскости: горизонтальный,
вертикальный, ротаторный;

- по амплитуде: мелко-, средне- или
крупноразмашистый;
- по динамике: затухающий или постоянный;
- по ритму: ритмичный, неритмичный;

(эндогенный) и индуцированный (вращательный,
калорический, гальванический, прессорный,
оптокинетический)
-

Характеристики вестибулярного нистагма

- по направлению: вправо или влево.
- по плоскости: горизонтально-ротаторный;
- по силе: нистагм I, II, III степени;
- по амплитуде: мелко-, или
среднеразмашистый;
- по динамике: затухающий;
- по ритму: ритмичный;
- по происхождению: спонтанный
(эндогенный) и индуцированный
(вращательный, калорический,
гальванический, прессорный)

Функциональное исследование вестибулярного анализатора:

Субъективные ощущения.
Спонтанный нистагм (SpNy).
Выполнение указательных проб (пальцепальцевая, пальце-носовая).
Реакция спонтанного отклонения рук
(Фишера-Водака).
Поза Ромберга.
Адиадохокинез.
Походка с открытыми глазами.
Фланговая походка.
Прессорная проба.

Слуховая сенсорная система человека воспринимает и различает огромный диапазон звуков. Их разнообразие и богатство служит для нас как источником информации о происходящих событиях окружающей действительности, так и важным фактором, влияющим на эмоциональное и психическое состояние нашего организма. В данной статье мы рассмотрим анатомию уха человека, а также особенности функционирования периферического отдела слухового анализатора.

Механизм различения звуковых колебаний

Ученые установили, что восприятие звука, который, по сути, является колебаниями воздуха в слуховом анализаторе, трансформируется в процесс возбуждения. Ответственной за ощущение звуковых раздражителей в слуховом анализаторе является периферическая его часть, содержащая рецепторы и входящая в состав уха. Она воспринимает амплитуду колебаний, называемую звуковым давлением, в интервале от 16 Гц до 20 кГц. В нашем организме слуховой анализатор выполняет еще и такую важнейшую роль, как участие в работе системы, ответственной за развитие членораздельной речи и всей психоэмоциональной сферы. Вначале ознакомимся с общим планом строения органа слуха.

Отделы периферической части слухового анализатора

Анатомия уха выделяет три структуры, называемые наружным, средним и внутренним ухом. Каждая из них выполняет специфические функции, не только взаимосвязанные между собой, но и все вместе осуществляющие процессы приема звуковых сигналов, их преобразования в нервные импульсы. По слуховым нервам они передаются в височную долю коры головного мозга, где происходит трансформация звуковых волн в форму разнообразных звуков: музыку, пение птиц, шум морского прибоя. В процессе филогенеза биологического вида "Человек разумный" орган слуха сыграл важнейшую роль, так как обеспечил проявление такого феномена, как человеческая речь. Отделы органа слуха сформировались в ходе эмбрионального развития человека из наружного зародышевого листка - эктодермы.

Наружное ухо

Эта часть периферического отдела улавливает и направляет колебания воздуха к барабанной перепонке. Анатомия наружного уха представлена хрящевой раковиной и наружным слуховым проходом. Как это выглядит? Внешняя форма ушной раковины имеет характерные изгибы - завитки, и сильно отличается у разных людей. На одном из них может находиться Дарвинов бугорок. Он считается рудиментарным органом, и по происхождению гомологичен заостренному верхнему краю уха млекопитающих, особенно приматов. Нижняя часть называется мочкой и представляет собой соединительную ткань, покрытую кожей.

Слуховой проход - структура наружного уха

Далее. Слуховой проход - это трубка, состоящая из хрящевой и частично из костной ткани. Она покрыта эпителием, содержащим видоизмененные потовые железы, выделяющие серу, которая увлажняет и обеззараживает полость прохода. Мышцы ушной раковины у большинства людей атрофированы, в отличие от млекопитающих, чьи уши активно реагируют на внешние звуковые раздражители. Патологии нарушения анатомии строения уха фиксируются в ранний период развития жаберных дуг человеческого эмбриона и могут иметь вид расщепления мочки, сужения наружного слухового прохода или агенезии - полного отсутствия ушной раковины.

Полость среднего уха

Слуховой проход заканчивается эластичной пленкой, отделяющей наружное ухо от средней его части. Это - барабанная перепонка. Она принимает звуковые волны и начинает колебаться, что вызывает аналогичные движения слуховых косточек - молоточка, наковальни и стремечка, расположенных в среднем ухе, в глубине височной кости. Молоточек своей рукояткой присоединен к барабанной перепонке, а головкой связан с наковальней. Она, в свою очередь, своим длинным концом смыкается со стремечком, а оно прикрепляется к окошку преддверия, за которым находится внутреннее ухо. Все очень просто. Анатомия ушей выявила, что к длинному отростку молоточка присоединяется мышца, уменьшающая натяжение барабанной перепонки. А к короткой части этой слуховой косточки прикрепляется так называемый "антагонист". Особая мышца.

Евстахиева труба

С глоткой среднее ухо соединяется посредством канала, названного в честь ученого, описавшего его строение, - Бартоломео Эустахио. Труба служит приспособлением, выравнивающим давление атмосферного воздуха на барабанную перепонку с двух сторон: от наружного слухового прохода и полости среднего уха. Это необходимо для того, чтобы колебания барабанной перепонки без искажений передавались жидкости перепончатого лабиринта внутреннего уха. Евстахиева труба неоднородна по своему гистологическому строению. Анатомия ушей выявила, что она содержит не только костную часть. Также и хрящевую. Опускаясь вниз от полости среднего уха, труба заканчивается глоточным отверстием, располагающимся на латеральной поверхности носоглотки. Во время глотания мышечные фибриллы, прикрепленные к хрящевому отделу трубы, сокращаются, ее просвет расширяется, и порция воздуха входит в барабанную полость. Давление на перепонку в этот момент становится одинаковым с обеих ее сторон. Вокруг глоточного отверстия находится участок лимфоидной ткани, образующий узлы. Он называется миндалиной Герлаха и входит в состав иммунной системы.

Особенности анатомии внутреннего уха

Эта часть периферического отдела слуховой сенсорной системы расположена в глубине височной кости. Она состоит из полукружных каналов, относящихся к органу равновесия и костного лабиринта. Последняя структура содержит улитку, внутри которой расположен кортиев орган, являющийся звуковоспринимающей системой. По ходу спирали улитка разделена тонкой вестибулярной пластинкой и более плотной основной мембраной. Обе перепонки разделяют улитку на каналы: нижний, средний и верхний. У ее широкого основания верхний канал начинается овальным окном, а нижний закрыт круглым окном. Оба они заполнены жидким содержимым - перилимфой. Ее считают видоизмененным ликвором - веществом, заполняющим спинномозговой канал. Эндолимфа - еще одна жидкость, заполняющая каналы улитки и скапливающаяся в полости, где расположены нервные окончания органа равновесия. Продолжим изучать анатомию ушей и рассмотрим те части слухового анализатора, которые отвечают за перекодировку звуковых колебаний в процесс возбуждения.

Значение кортиева органа

Внутри улитки находится перепончатая стенка, называемая основной мембраной, на которой располагается скопление клеток двух типов. Одни выполняют функцию опоры, другие являются сенсорными - волосковыми. Они воспринимают колебания перилимфы, преобразуют их в нервные импульсы и передают далее чувствительным волокнам преддверноулиткового (слухового) нерва. Далее возбуждение достигает коркового центра слуха, находящегося в височной доле головного мозга. В ней происходит различение звуковых сигналов. Клиническая анатомия уха подтверждает тот факт, что для определения направления звука важно то, что мы слышим двумя ушами. Если звуковые колебания достигают их одновременно, человек воспринимает звук спереди и сзади. А если волны придут в одно ухо раньше, чем в другое, то восприятие происходит справа или слева.

Теории звукового восприятия

На сегодняшний момент нет единого мнения о том, как именно функционирует система, анализирующая звуковые вибрации и переводящая их в форму звуковых образов. Анатомия строения уха человека выделяет следующие научные представления. Например, резонансная теория Гельмгольца утверждает, что основная мембрана улитки функционирует как резонатор и способна раскладывать сложные колебания на более простые компоненты, так как ее ширина неодинакова на верхушке и у основания. Поэтому при появлении звуков происходит резонанс, как в струнном инструменте - арфе или рояле.

Другая теория объясняет процесс появления звуков тем, что в жидкости улитки возникает бегущая волна как ответ на колебания эндолимфы. Вибрирующие волокна основной мембраны входят в резонанс с конкретной частотой колебаний, в волосковых клетках возникают нервные импульсы. Они поступают по слуховым нервам в височную часть коры головного мозга, где и происходит конечный анализ звуков. Все предельно просто. Обе эти теории звукового восприятия базируются на знаниях анатомии уха человека.

Периферический отдел слухового анализатора выполняет две основные функции:

  • звукопроведение, т.е. доставку звуковой энергии к рецепторному аппарату улитки;
  • звуковосприятие - трансформация физической энергии звуковых колебаний в нервное возбуждение. Соответственно этим функциям различают звукопроводящий и звуковоспринимающий аппараты.

Звукопроведение осуществляется при участии ушной раковины , наружного слухового прохода , барабанной перепонки , цепи слуховых косточек , жидкостей внутреннего уха, мембраны окна улитки, а также рейсснеровой, базилярной и покровной мембран.

Основной путь доставки звуков к рецептору - воздушный. Звуковые колебания поступают в наружный слуховой проход , достигаютбарабанной перепонки и вызывают ее колебания. В фазе повышенного давления барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молоточка благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковальни - кнутри, смещая таким образом кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия.

Дальнейшее распространение звуковой волны происходит по перилимфе лестницы преддверия, через геликотрему передается на барабанную лестницу и в конечном счете вызывает смещение мембраны окна улитки в сторону барабанной полости. Колебания перилимфы через преддверную мембрану Рейсснера передаются на эндолимфу и базилярную мембрану, на которой находится спиральный орган с чувствительными волосковыми клетками. Распространение звуковой волны в перилимфе возможно благодаря наличию эластичной мембраны окна улитки, а в эндолимфе - вследствие эластичного эндолимфатического мешка, сообщающегося с эндолимфатическим пространством лабиринта через эндолимфатический проток.

Воздушный путь доставки звуковых волн во внутреннее ухо является основным. Однако существует и другой путь проведения звуков к кортиеву органу - костно-тканевой, когда звуковые колебания попадают на кости черепа, распространяются в них и доходят до улитки.

Различают инерционный и компрессионный типы костного проведения. При воздействии низких звуков череп колеблется как целое, и благодаря инерции цепислуховых косточек получается относительное перемещение капсулы лабиринта относительно стремени, что вызывает смещение столба жидкости в улитке и возбуждение спирального органа. Это инерционный тип костного проведения звуков. Компрессионный тип имеет место при передаче высоких звуков, когда энергия звуковой волны вызывает периодическое сжатие волной капсулы лабиринта, что приводит к выпячиванию мембраны окна улитки и в меньшей степени основания стремени. Так же как и воздушная проводимость, инерционный путь передачи звуковых волн нуждается в нормальной подвижности мембран обоих окон. При компрессионном типе костной проводимости достаточно подвижности одной из мембран.

Колебание костей черепа можно вызвать прикосновением к нему звучащего камертона или костного телефона аудиометра. Костный путь передачи приобретает особое значение при нарушении передачи звуков через воздух.

Рассмотрим роль отдельных элементов органа слуха в проведении звуковых волн.

Ушная раковина играет роль своеобразного коллектора, направляющего высокочастотные звуковые колебания во вход в наружный слуховой проход . Ушные раковины имеют также определенное значение в вертикальной ототопике. При изменении положения ушных раковин вертикальная ототопика искажается, а при выключении их путем введения в наружные слуховые проходы полых трубочек полностью исчезает. Однако при этом не нарушается способность локализовать источники звука по горизонтали.

Наружный слуховой проход является проводником звуковых волн к барабанной перепонке. Ширина и форма наружного слухового прохода не играют особой роли при звукопроведении. Однако полное заращение просвета наружного слухового прохода или его обтурация препятствуют распространению звуковых волн и приводят к заметному ухудшению слуха.

В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, и это обеспечивает стабильность упругих свойств барабанной перепонки. Кроме того, в наружном слуховом проходе происходит избирательное усиление на 10-12 дБ звуковых волн частотой около 3 кГц. С физической точки зрения это объясняется резонансными свойствами слухового прохода, имеющего длину около 2,7 см, что составляет!/4 длины волн резонансной частоты.

Ухо – парный орган, расположенный в глубине височной кости. Строение уха человека позволяет принимать механические колебания воздуха, передавать их по внутренним средам, преобразовывать и передавать в мозг.

К важнейшим функциям уха относится анализ положения тела, координация движений.

В анатомическом строении уха человека условно выделяют три раздела:

  • наружное;
  • среднее;
  • внутреннее.

Раковина уха

Состоит из хряща толщиной до 1 мм, над которым расположены слои надхрящницы и кожи. Мочка уха лишена хряща, состоит из жировой ткани, покрытой кожей. Раковина вогнута, по краю идет валик – завиток.

Внутри нее идет противозавиток, отделенный от завитка вытянутым углублением – ладьей. От противозавитка к слуховому проходу идет углубление, называемое полостью ушной раковины. Впереди ушного прохода выступает козелок.

Слуховой проход

Отражаясь от складок раковины уха, звук перемещается в слуховой 2,5 см в длину, диаметром в 0,9 см. Основой ушного прохода в начальном отделе служит хрящ. Он напоминает формой желоб, открытый вверх. В хрящевом отделе располагаются санториевые щели, граничащие со слюнной железой.

Начальный хрящевой отдел ушного прохода переходит в костный отдел. Проход изогнут в горизонтальном направлении, для осмотра уха раковину подтягивают назад и вверх. У детей – назад и вниз.

Выстлан ушной проход кожей с сальными, серными железами. Серные железы – это видоизмененные сальные железы, продуцирующие . Удаляется она при жевании из-за колебаний стенок слухового прохода.

Оканчивается он барабанной перепонкой, слепо замыкающей слуховой проход, граничит:

  • с суставом нижней челюсти, при жевании движение передается на хрящевую часть прохода;
  • с ячейками сосцевидного отростка, лицевым нервом;
  • со слюнной железой.

Перепонка между наружным ухом и средним – овальная полупрозрачная фиброзная пластинка, размерами 10 мм — длина, 8-9 мм – ширина, 0,1 мм – толщина. Площадь мембраны составляет около 60 мм 2 .

Плоскость мембраны расположена наклонно к оси слухового прохода под углом, втянута воронкообразно внутрь полости. Максимальное натяжение мембраны в центре. За барабанной перепонкой находится полость среднего уха.

Различают:

  • полость среднего уха (барабанная);
  • слуховая труба (евстахиева);
  • слуховые косточки.

Барабанная полость

Полость находится в височной кости, объем ее — 1 см 3 . В ней размещаются слуховые косточки, сочлененные с барабанной перепонкой.

Над полостью помещается сосцевидный отросток, состоящий из воздухоносных ячеек. В нем размещается пещера — воздухоносная клетка, служащая в анатомии уха человека самым характерным ориентиром при проведении любых операций на ухе.

Слуховая труба

Образование длиной в 3,5 см, диаметром просвета до 2 мм. Верхнее ее устье находится в барабанной полости, нижнее глоточное устье открывается в носоглотке на уровне твердого неба.

Состоит слуховая труба из двух отделов, разделенных самым узким ее местом – перешейком. От барабанной полости отходит костная часть, ниже перешейка — перепончато-хрящевая.

Стенки трубы в хрящевом отделе в обычном состоянии сомкнуты, приоткрываются при жевании, глотании, зевании. Расширение просвета трубы обеспечивается двумя мышцами, связанными с небной занавеской. Слизистая оболочка выстлана эпителием, реснички которого движутся к глоточному устью, обеспечивая дренажную функцию трубы.

Мельчайшие косточки в анатомии человека – слуховые косточки уха, предназначаются для проведения звуковых колебаний. В среднем ухе находится цепь: молоточек, стремя, наковальня.

Молоточек прикреплен к барабанной мембране, его головка сочленяется с наковальней. Отросток наковальни соединен со стремечком, прикрепленным своим основанием к окну преддверия, расположенного на лабиринтной стенке между средним и внутренним ухом.

Структура представляет собой лабиринт, состоящий из костной капсулы и перепончатого образования, повторяющего форму капсулы.

В костном лабиринте различают:

  • преддверие;
  • улитку;
  • 3 полукружных канала.

Улитка

Костное образование представляет собой объемную спираль в 2,5 оборота вокруг костного стержня. Ширина основания конуса улитки – 9 мм, высота – 5 мм, длина костной спирали – 32 мм. От костного стержня внутрь лабиринта отходит спиральная пластина, которая делит костный лабиринт на два канала.

У основания спиральной пластинки находятся слуховые нейроны спирального ганглия. В костном лабиринте находится перилимфа и перепончатый лабиринт, наполненный эндолимфой. Перепончатый лабиринт подвешен в костном с помощью тяжей.

Перилимфа и эндолимфа связаны функционально.

  • Перилимфа – по ионному составу близка к плазме крови;
  • эндолимфа – сходна с внутриклеточной жидкостью.

Нарушение этого равновесия приводит к повышению давления в лабиринте.

Улитка является органом, в котором физические колебания жидкости перилимфы преобразуются в электрические импульсы нервных окончаний черепно-мозговых центров, передающихся в слуховой нерв и в головной мозг. В верхней части улитки находится слуховой анализатор – кортиев орган.

Преддверие

Наиболее древняя анатомически средняя часть внутреннего уха — полость, граничащая с лестницей улитки посредством сферического мешочка и с полукружными каналами. На стенке преддверия, ведущей в барабанную полость, расположены два окна — овальное, прикрытое стремечком и круглое, представляющее собой вторичную барабанную перепонку.

Особенности строения полукружных каналов

Все три взаимно перпендикулярных костных полукружных канала имеют сходное строение: состоят из расширенной и простой ножки. Внутри костных находятся перепончатые каналы, повторяющие их форму. Полукружные каналы и мешочки преддверия составляют вестибулярный аппарат, отвечают за равновесие, координацию, определение положения тела в пространстве.

У новорожденного орган не сформирован, отличается от взрослого рядом особенностей строения.

Ушная раковина

  • Раковина мягкая;
  • мочка и завиток слабо выражены, формируются к 4 годам.

Слуховой проход

  • Костная часть не развита;
  • стенки прохода располагаются почти вплотную;
  • барабанная мембрана лежит практически горизонтально.

  • Размеры почти как у взрослых;
  • у детей барабанная перепонка толще, чем у взрослых;
  • покрыта слизистой оболочкой.

Барабанная полость

В верхней части полости имеется незаращенная щель, через которую при острых средних отитах инфекция способна проникать в мозг, вызывая явления менингизма. У взрослого эта щель зарастает.

Сосцевидный отросток у детей не развит, представляет собой полость (атриум). Начинается развитие отростка в возрасте 2 лет, заканчивается к 6 годам.

Слуховая труба

У детей слуховая труба шире, короче, чем у взрослых, располагается горизонтально.

Сложно устроенный парный орган принимает колебания звука 16 Гц — 20000 Гц. Травмы, инфекционные заболевания снижают порог чувствительности, приводят к постепенной утрате слуха. Успехи медицины в лечении болезней ушей, слухопротезировании позволяют восстановить слух в самых сложных случаях тугоухости.

Видео об строении слухового анализатора