Центромера в хромосоме выполняет функции. Способы деления соматических и половых клеток

Эукариотическая хромосома удерживается на митотическом веретене за счет присоединения микротрубочек к кинетохору, который образуется в центромерной области

Обычно центромеры содержат хроматин, обогащенный сателлитными последовательностями ДНК

При митозе сестринские хроматиды мигрируют к противоположным полюсам клетки. Это движение происходит потому, что хромосомы присоединены к микротрубочкам, противоположные концы которых связаны с полюсами. (Микротрубочки представляют собой внутриклеточные цилиндрические структуры, которые при митозе организуются таким образом, что соединяют хромосомы с полюсами клетки.)

Сайты в двух регионах , где организуются концы микротрубочек - поблизости от центриоли на полюсах и на хромосомах, - называются ЦОМТ (центры организации микротрубочек).

Рисунок ниже схематически иллюстрирует процесс разделения сестринских хроматид, происходящий между метафазой и телофазой митоза. Область хромосомы, ответственная за ее сегрегацию в митозе и мейозе, называется центромера. Посредством микротрубочек центромера каждой сестринской хроматиды оттягивается к противоположным полюсам и тянет за собой связанную с ней хромосому. Хромосома обеспечивает механизм присоединения большого количества генов к аппарату деления.

Хромосомы мигрируют к полюсам посредством микротрубочек, присоединенных к центромерам.
Посредством скрепляющих белков (когезинов) сестринские хроматиды соединяются вместе до наступления анафазы.
На рисунке показаны центромеры, находящиеся в центре хромосом (метацентрические),
однако они могут быть локализованы в любом месте хромосомы: поблизости от конца (акроцентрические) или на самом конце (телоцентрические).

Она содержит сайт , который удерживает сестринские хроматиды вместе, до момента сегрегации индивидуальных хромосом. Он выглядит как перетяжка, к которой присоединены все четыре плеча хромосомы, как это изображено на рисунке ниже, где показаны сестринские хроматиды в стадии метафазы.

Центромера необходима для сегрегации хромосом. Это подтверждается свойствами хромосом, целостность которых была нарушена. В результате разрыва один фрагмент хромосомы сохраняет центромеру, а другой, называемый ацентрическим, ее не содержит. Ацентрический фрагмент не способен присоединяться к митотическому веретену, в результате чего он не попадает в ядро дочерней клетки.

Области хромосомы , фланкирующие центромеру, обычно содержат , богатую сателлитными последовательностями, и значительное количество гетерохроматина. Поскольку вся митотическая хромосома конденсирована, центромерный гетерохроматин в ней незаметен. Однако его можно визуализировать, используя технику прокрашивания, позволяющую выявить С-полосы. На рисунке ниже в области всех центромер присутствует темноокрашенный регион. Такая картина видна наиболее часто, хотя гетерохроматин может и не обнаруживаться в области каждой центромеры. Это позволяет думать, что центромерный гетерохроматин, по-видимому, не является необходимым компонентом механизма деления.

Область образования центромеры в хромосоме определяется первичной структурой ДНК (хотя специфическая последовательность известна лишь для небольшого количества хромосом). ДНК центромеры связывает определенные белки, которые формируют структуру, обеспечивающую присоединение хромосомы к микротрубочкам. Эта структура называется кинетохор. Она представляет собой прокрашивающуюся фибриллярную структуру диаметром или длиной около 400 нм.

Кинетохор обеспечивает создание ЦОМТ на хромосоме. На рисунке ниже представлена иерархическая организация связывания ДНК центромеры с микротрубочками. Белки, связанные с ДНК центромеры, связаны с другими белками, которые, в свою очередь, связаны с микротрубочками.

Когда центромеры сестринских хроматид начинают движение к полюсам, хроматиды остаются скрепленными посредством «склеивающих» белков, называемых когезины. Вначале хроматиды разделяются в области центромеры, а затем, в анафазе, когда когезины разрушаются, они полностью отделяются друг от друга.

С-полосы образуются в результате интенсивного прокрашивания центромер всех хромосом.
Центромера идентифицируется по определенной последовательности ДНК, связывающей специфические белки.
Эти белки непосредственно не взаимодействуют с микротрубочками, однако обозначают сайт,
к которому присоединяются белки, в свою очередь связывающиеся с микротрубочками.

Энциклопедичный YouTube

    1 / 3

    Хромосомы, хроматиды, хроматин и т.п.

    ЗНО Біологія Ядро Ген Хромосоми

    Гены, ДНК и хромосомы

    Субтитры

    Перед погружением в механизм деления клеток, я думаю, будет полезно поговорить о лексике, связанной с ДНК. Есть много слов, и некоторые из них сходны по звучанию друг с другом. Они могут сбивать с толку. Для начала я бы хотел поговорить о том, как ДНК генерирует больше ДНК, создаёт свои копии, или о том, как она вообще делает белки. Мы уже говорили об этом в ролике о ДНК. Давайте я нарисую небольшой участок ДНК. У меня есть A, Г, T, пусть у меня Есть два Т и потом два Ц. Такой небольшой участок. Он продолжается вот так. Конечно, это двойная спираль. Каждой букве соответствует своя. Я нарисую их этим цветом. Итак, A соответствует T, Г соответствует Ц, (точнее Г образует водородные связи с Ц), T - с A, T - с A, Ц - с Г, Ц - с Г. Вся эта спираль тянется, допустим, в этом направлении. Итак, есть пара различных процессов, которые эта ДНК должна осуществить. Один из них связан с клетками вашего тела - необходимо произвести больше клеток вашей кожи. Ваша ДНК должна скопировать себя. Этот процесс называется репликацией. Вы реплицируете ДНК. Я покажу вам репликацию. Как эта ДНК может скопировать себя? Это одна из самых замечательных особенностей структуры ДНК. Репликация. Я делаю общее упрощение, но идея заключается в том, что две цепи ДНК разделяются, и это происходит не само по себе. Этому способствует масса белков и ферментов, но в деталях я буду рассказывать о микробиологии в другом ролике. Итак, эти цепи отделяются друг от друга. Я перенесу цепь сюда. Они отделяются друг от друга. Я возьму другую цепь. Эта слишком большая. Эта цепь будет выглядеть как-то так. Они отделяются друг от друга. Что же может произойти после этого? Я удалю лишние фрагменты здесь и здесь. Итак, вот наша двойная спираль. Они все были связаны. Это пары оснований. Теперь они отделяются друг от друга. Что может делать каждая из них после разделения? Они теперь могут стать матрицей друг для друга. Смотрите… Если эта цепь находится сама по себе, сейчас, неожиданно может прийти тиминовое основание и присоединится здесь, и эти нуклеотиды начнут выстраиваться в линию. Тимин и цитозин, и потом аденин, аденин, гуанин, гуанин. И так продолжаться. И тогда, в этой другой части, на зелёной цепи, которая была до этого прикреплена к этой голубой, будет происходить то же самое. Будет аденин, гуанин, тимин, тимин, цитозин, цитозин. Что произошло только что? Разделением и привлечением комплементарных оснований, мы создали копию этой молекулы. Мы займёмся микробиологией этого в будущем, это только для общего представления о том, как ДНК копирует себя. Особенно, когда мы рассматриваем митоз и мейоз, я могу сказать: «Это стадия, где происходит репликация». Теперь, другой процесс, о котором вы ещё много услышите. Я говорил о нём в ролике о ДНК. Это транскрипция. В ролике о ДНК я не уделял много внимания тому, как ДНК удваивает сама себя, но одна из великолепных особенностей устройства двойной цепи - это лёгкая возможность самоудвоения. Вы просто разделяете 2 полоски, 2 спирали, а потом они становятся матрицей для другой цепи, и тогда появляется копия. Теперь транскрипция. Это то, что должно произойти с ДНК для того, чтобы образовались белки, но транскрипция - это промежуточная стадия. Это стадия, когда вы переходите от ДНК к мРНК. Тогда эта мРНК покидает ядро клетки и направляется к рибосомам. Я буду говорить об этом через несколько секунд. Итак, мы можем сделать то же самое. Эти цепи опять в ходе транскрипции разделяются. Одна отделяется сюда, а другая отделяется... а другая будет отделятся вот сюда. Прекрасно. Может быть имеет смысл использовать только одну половину цепи - я удалю одну. Вот таким образом. Мы собираемся транскрибировать зелёную часть. Вот она. Всё это я удалю. Не тот цвет. Итак, я удаляю всё это. Что произойдёт, если вместо нуклеотидов дезоксирибонуклеиновой кислоты, которые образуют пары с этой цепью ДНК, у вас есть рибонуклеиновая кислота, или РНК, образующая пары. Изображу РНК пурпурным цветом. РНК будет образовывать пары с ДНК. Тимин, находящийся в ДНК, будет образовывать пару с аденином. Гуанин, теперь, когда мы говорим о РНК, вместо тимина у нас будет урацил, урацил, цитозин, цитозин. И это будет продолжаться. Это мРНК. Информационная РНК. Теперь она отделяется. Эта мРНК отделяется и покидает ядро. Она покидает ядро, и тогда происходит трансляция. Трансляция. Запишем этот термин. Трансляция. Это идёт от мРНК... В ролике о ДНК у меня была маленькая тРНК. Транспортная РНК была как бы грузовиком, перевозящим аминокислоты к мРНК. Всё это происходит в части клетки, называемой рибосомой. Трансляция происходит от мРНК к белку. Мы видели, как это происходит. Итак, от мРНК к белку. У вас есть эта цепь - я сделаю копию. Скопирую всю цепь сразу. Эта цепь отделяется, покидает ядро, и тогда у вас есть эти маленькие грузовики тРНК, которые, собственно, и, так сказать, подъезжают. Итак, допустим, у меня есть тРНК. Давайте посмотрим, аденин, аденин, гуанин и гуанин. Это РНК. Это кодон. Кодон имеет 3 пары оснований и прикреплённую к нему аминокислоту. У вас есть некоторые другие части тРНК. Скажем, урацил, цитозин, аденин. И прикреплённая к нему другая аминокислота. Тогда аминокислоты соединяются и образуют длинную цепь аминокислот, которая является белком. Белки образуют эти странные сложные формы. Чтобы убедиться, что вы поняли. Мы начнём с ДНК. Если мы производим копии ДНК - это репликация. Вы реплицируете ДНК. Итак, если мы производим копии ДНК - это репликация. Если вы начинаете с ДНК и создаёте мРНК с матрицы ДНК, то это транскрипция. Запишем. "Транскрипция" . То есть вы транскрибируете информацию с одной формы на другую - транскрипция. Теперь, когда мРНК покидает ядро клетки… Я нарисую клетку, чтобы обратить на это внимание. Мы займёмся структурой клетки в будущем. Если это целая клетка, ядро - это центр. Это место, где находятся все ДНК, все репликации и транскрипции происходят здесь. Затем мРНК покидает ядро, и тогда в рибосомах, которые мы более подробно обсудим в будущем, происходит трансляция и формируется белок. Итак, от мРНК к белку - это трансляция. Вы транслируете с генетического кода, в так называемый белковый код. Итак, это и есть трансляция. Это именно те слова, которые обычно используются для описания этих процессов. Убедитесь, что вы правильно их используете, называя различные процессы. Теперь другая часть терминологии ДНК. Когда я впервые встретился с ней, я решил, что она чрезвычайно сбивает с толку. Это слово «хромосома». Запишу слова здесь - вы сами можете оценить, как они сбивают с толку: хромосома, хроматин и хроматида. Хроматида. Итак, хромосома, мы уже говорили о ней. У вас может быть цепь ДНК. Это двойная спираль. Эта цепь, если я увеличу её, - на самом деле две разных цепи. Они имеют соединённые пары оснований. Я только что нарисовал пары оснований, соединённые вместе. Я хочу, чтобы было ясно: я нарисовал эту небольшую зелёную линию здесь. Это двойная спираль. Она оборачивается вокруг белков, которые называются гистонами. Гистоны. Пусть она оборачивается вот так и как-то так, а потом как-нибудь так. Здесь у вас есть вещества, называемые гистонами, которые являются белками. Нарисуем их вот таким образом. Вот так. Это структура, то есть ДНК в комбинации с белками, которые её структурируют, заставляя оборачиваться вокруг дальше и дальше. В конечном счёте, в зависимости от стадии жизни клетки, будут образовываться различные структуры. И когда вы говорите о нуклеиновой кислоте, которая является ДНК, и объединяете её с белками, то вы говорите о хроматине. Значит, хроматин - это ДНК плюс структурные белки, которые придают ДНК форму. Структурные белки. Идея хроматина была впервые использована из-за того, что люди видели, когда смотрели на клетку… Помните? Каждый раз я рисовал клеточное ядро определённым образом. Скажем, так. Это ядро клетки. Я рисовал очень хорошо различимые структуры. Это одна, это другая. Может быть, она короче, и у неё есть гомологичная хромосома. Я нарисовал хромосомы, так? И каждая из этих хромосом, как я уже показывал в прошлом видео, - по существу - длинные структуры ДНК, длинные цепи ДНК, плотно обёрнутые друг вокруг друга. Я рисовал это как-то так. Если мы увеличим, то увидим одну цепь, и она действительно обёрнута вокруг себя подобно этому. Это её гомологичная хромосома. Вспомните, в ролике, посвящённом изменчивости, я говорил о гомологичной хромосоме, которая кодирует те же гены, но другую их версию. Синий - от папы, а красный - от мамы, но они по существу кодируют те же гены. Итак, это одна цепь, которую я получил от папы с ДНК этой структуры, мы называем её хромосомой. Итак, хромосома. Я хочу, чтобы это было ясно, ДНК принимает эту форму только на определённых жизненных стадиях, когда она воспроизводит сама себя, т.е. реплицируется. Точнее не так… Когда клетка делится. Перед тем как клетка становится способной к делению, ДНК принимает эту хорошо определённую форму. Большую часть жизни клетки, когда ДНК делает свою работу, когда она создаёт белки, то есть белки транскрибируются и транслируются с ДНК, она не сворачивается таким образом. Если бы она была свёрнута, для репликационной и транскрипционной системы было бы затруднительно проникнуть к ДНК, произвести белки и делать что-то ещё. Обычно ДНК… Давайте я ещё раз нарисую ядро. Чаще всего вы даже не можете увидеть её в обычный световой микроскоп. Она настолько тонкая, что вся спираль ДНК полностью распределена в ядре. Я рисую это здесь, другая может быть здесь. А потом у вас есть более короткая цепь, типа этой. Вы даже не можете её увидеть. Она не находится в этой, хорошо определённой структуре. Обычно это выглядит таким образом. Пусть будет ещё такая короткая цепь. Вы можете увидеть только подобный беспорядок, состоящий из путаницы комбинаций ДНК и белков. Это то, что люди в общем-то и называют хроматином. Это нужно записать. "Хроматин" Таким образом, слова могут быть очень неоднозначны и очень запутанны, но общее использование, когда вы говорите о хорошо определённой одной цепи ДНК, вот таким образом хорошо определённой структуры, то это хромосома. Понятие "хроматин" может относиться либо к структуре типа хромосомы, комбинации ДНК и белков, структурирующих ее, либо к беспорядку множества хромосом, в которых есть ДНК. То есть из множества хромосом и белков, перемешанных вместе. Я хочу, чтобы это было понятно. Теперь следующее слово. Что такое хроматида? На всякий случай, если я ещё не сделал этого… Я не помню, помечал ли я это. Эти белки, которые обеспечивают структуру хроматина или составляют хроматин, а также обеспечивают структуру называются "гистонами". Есть различные типы, которые обеспечивают структуру на различных уровнях, мы ещё рассмотрим их детально. Итак, что такое хроматида? Когда ДНК реплицируется… Скажем, это была моя ДНК, она находится в нормальном состоянии. Одна версия - от папы, одна версия - от мамы. Теперь она реплицируется. Версия от папы сначала выглядит так. Это большая цепь ДНК. Она создаёт другую версию себя, идентичную, если система работает правильно, и эта идентичная часть выглядит так. Они изначально прикреплены друг к другу. Они прикреплены друг к другу в месте, называемом центромерой. Теперь, несмотря на то что у меня здесь 2 цепи, скрепленные вместе. Две одинаковые цепи. Одна цепь здесь, одна тут… Хотя давайте я изображу иначе. В принципе это можно изобразить множеством разных способов. Это одна цепь здесь, и вот другая цепь тут. То есть у нас имеются 2 копии. Они кодируют абсолютно одинаковую ДНК. Так вот. Они идентичны, поэтому я всё ещё называю это хромосомой. Запишем это тоже. Всё это вместе называется хромосомой, но теперь каждая отдельная копия называется хроматидой. Итак, это одна хроматида и это другая. Иногда их называют сестринскими хроматидами. Также их можно назвать хроматидами-близнецами, потому что у них одна и та же генетическая информация. Итак, эта хромосома имеет 2 хроматиды. Теперь перед репликацией или перед удвоением ДНК вы можете сказать, что эта хромосома вот здесь имеет одну хроматиду. Вы можете называть это хроматидой, но это не обязательно. Люди начинают говорить о хроматидах тогда, когда две из них присутствуют в хромосоме. Мы узнаем, что в митозе и мейозе эти 2 хроматиды разделяются. Когда они разделяются, тут же цепь ДНК, которую вы однажды называли хроматидой, теперь вы будете называть отдельной хромосомой. Итак, это одна из них, и вот другая, которая могла отделиться в этом направлении. Обведу эту зелёным. Итак, эта может отойти в эту сторону, а эта, которую я обвёл оранжевым, например, в эту … Теперь, когда они отделены и больше не связаны центромерой, то, что мы изначально называли одной хромосомой с двумя хроматидами, теперь вы называете двумя отдельными хромосомами. Или можно сказать, что теперь у вас есть две отдельные хромосомы, каждая из которых состоит из одной хроматиды. Я надеюсь, что это немного проясняет значение терминов, связанных с ДНК. Я всегда находил их довольно запутанными, но они будут полезным инструментом, когда мы начнём митоз и мейоз и я буду говорить о том, что хромосома становится хроматидой. Вы будете спрашивать, как одна хромосома стала двумя хромосомами, и как хроматида стала хромосомой. Всё это вращается вокруг лексики. Я бы выбрал другую, вместо того чтобы называть это хромосомой и каждую из этих отдельными хромосомами, но так решили называть за нас. Возможно, вам интересно узнать, откуда это слово - «хромо». Может быть, вы знаете старую плёнку «Кодак», которая называлась «хромо цвет». В принципе «хромо» означает «цвет». Я думаю, оно происходит от греческого слова «цвет». Когда люди первый раз стали рассматривать ядро клетки, они использовали краситель, и то, что мы называем хромосомами, окрашивалось красителем. И мы могли видеть это в световой микроскоп. Часть «сома» происходит от слова «сома», обозначающего «тело», то есть мы получаем окрашенное тело. Так появилось слово «хромосома». Хроматин также окрашивается… Надеюсь, это немного проясняет понятия «хроматида», «хромосома», «хроматин», и теперь мы подготовлены к изучению митоза и мейоза.

Функции

Центромера принимает участие в соединении сестринских хроматид , формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии , которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Однако установлено, что повторов α-сателлита недостаточно для образования кинетохора, и что известны функциональные центромеры, не содержащие α-сателлитной ДНК.гетерохроматином , что, возможно, существенно для её функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетается с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

Центромеры - это хромосомные структуры ответственные за направление движения хромосом во время митоза. К функциям центромер относятся адгезия сестринских хроматид, образование кинетохора, спаривание гомологичных хромосом и вовлечение в контроль генетической экспрессии. У большинства эукариот центромеры не содержат определенной последовательности ДНК. Обычно они содержат повторы (например, сателлитной ДНК), схожие, но не идентичные. У нематоды Caenorhabditis elegans и некоторых растений хромосомы голоцентрические, т.е. образование кинетохора не локализовано определенным участком, а происходит диффузно по всей длине хромосомы.

Центромеры дрожжей

Центромера Sp длинной 35-110 тпн (чем хромосома длиннее, тем центромера меньше) и состоит из двух доменов - центральной коровой области и внешней области повторов (otr), предстравленной гетерохроматином (рис1). Центральная коровая область состоит из области неповторяющейся ДНК (cnt) и области инвертированных
повторов (imt) по краям cnt. В центральной коровой области нормальный гистон H3 заменен своим аналогом (CENP-A у Sc) и в этом месте собирается кинетохор. Маркерные гены встраеваемые в центромерную последовательность становятся транскрипционно неактивными. Их замолкание зависит от положения, например, на внешних повторах оно сильнее, а в центральной области менее выражено. Белки Mis6, Mis12, Mal2 и Sim4 связываются с центральным районом центромеры. Центральный район частично переваривается микрококковой нуклеазой, что указывает на особую организацию хроматина, причем эта организация не зависит от ДНК (ДНК перенесенная в Sp или в другие участки хромосомы не сохраняет такую организацию). Внешние повторы упакованы в нуклеосомы, с деацетилированными гистонами (при помощи деацетилаз Clr3, Clr6 и Sir2). Метилтрансфераза Clr4 диметилирует H3K9, на который садится Swi6 (аналог HP1) и Chp1. Таким образом, на центромере формируется гетерохроматин
(см. обзор Гетерохроматин). Swi6 отвечает за присоединение когезинов к области внешних повторов. otr состоят из dg и dh повторов, разделенные другими повторами. Внутренние и внешние повторы содержат кластеры генов тРНК. Установлено, что dg повторы имеют первостепенную роль в установлении центромерной активности.
ДНК центральной коровой области АТ-богатая и состоит из трех участков cnt1, cnt3 - гомологичны на 99%, расположены по кроям от сnt2 гомологичного с ними на 48%. Левый и правый imr инвертированы и уникальны для каждой центромеры.

Рис. 1

Все 16 центромер Sc имеют длину 90 пн и содержат три элемента: CDEI, CDEII и CDEIII (рис.2). CDEII - это АТ-богатый неконсервативный спейсер длинной 78-90 пн, разделяющий CDEI и CDEIII. CDEI имеет длину 8 пн. Этот участок не существеннен для центромерной активности, но его делеция повышает вероятность неправильного расхождения хромосом во время митоза. СDEII - 78-90 пн, содержит ~90% АТ-пар. Делеции в этом участке прерывают образование центромеры, не нарушая расхождение хромомсом. СDEIII - 26 пн содержит несовершенные палиндромы. Одиночная нуклеотидная замена в этом участке полностью прерывает центромерную активность.

Рис. 2

Рис. 3 Последовательности центромерной ДНК хромосом Sc



Центромеры человека

Центромера человека представляет участок 1-4 Мпн AT-богатого а-сателлита длинной ~171 пн (альфоид ). Другие сателлиты также присутствуют. В пределах повторов устанавливается место образования центромеры называемое неоцентромера. Первичная последовательность ДНК в установившейся неоцентромере не имеет значения. Не все а-сателлиты становятся центромерой, не смотря на присутствие двух локусов богатых а-сателлитом, активной центромерой становится только один из них. Интактная ДНК, содержащая альфоид и помещенная в ядро, не образует активной центромеры, поэтому первичный механизм образования активной центромеры остается неясным.

Формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии , которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Однако установлено, что повторов α-сателлита недостаточно для образования кинетохора, и что известны функциональные центромеры, не содержащие α-сателлитной ДНК.

Наследование

В определении местоположения центромеры у большинства организмов значительную роль играет эпигенетическое наследование . Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке. Предполагается, что должен быть какой-то первичный способ определения местоположения центромеры, даже если впоследствии её местоположение определяется эпигенетическими механизмами.

Строение

ДНК центромеры обычно представлена гетерохроматином , что, возможно, существенно для её функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетается с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

Центромера принимает участие в соединении сестринских хроматид , формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии , которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Однако установлено, что повторов α-сателлита недостаточно для образования кинетохора, и что известны функциональные центромеры, не содержащие α-сателлитной ДНК.

Наследование

В определении местоположения центромеры у большинства организмов значительную роль играет эпигенетическое наследование . Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке. Предполагается, что должен быть какой-то первичный способ определения местоположения центромеры, даже если впоследствии её местоположение определяется эпигенетическими механизмами.

Строение

ДНК центромеры обычно представлена гетерохроматином , что, возможно, существенно для её функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетается с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

Напишите отзыв о статье "Центромера"

Ссылки

Отрывок, характеризующий Центромера

Офицер опять обратился к Герасиму. Он требовал, чтобы Герасим показал ему комнаты в доме.
– Барин нету – не понимай… моя ваш… – говорил Герасим, стараясь делать свои слова понятнее тем, что он их говорил навыворот.
Французский офицер, улыбаясь, развел руками перед носом Герасима, давая чувствовать, что и он не понимает его, и, прихрамывая, пошел к двери, у которой стоял Пьер. Пьер хотел отойти, чтобы скрыться от него, но в это самое время он увидал из отворившейся двери кухни высунувшегося Макара Алексеича с пистолетом в руках. С хитростью безумного Макар Алексеич оглядел француза и, приподняв пистолет, прицелился.
– На абордаж!!! – закричал пьяный, нажимая спуск пистолета. Французский офицер обернулся на крик, и в то же мгновенье Пьер бросился на пьяного. В то время как Пьер схватил и приподнял пистолет, Макар Алексеич попал, наконец, пальцем на спуск, и раздался оглушивший и обдавший всех пороховым дымом выстрел. Француз побледнел и бросился назад к двери.
Забывший свое намерение не открывать своего знания французского языка, Пьер, вырвав пистолет и бросив его, подбежал к офицеру и по французски заговорил с ним.
– Vous n"etes pas blesse? [Вы не ранены?] – сказал он.
– Je crois que non, – отвечал офицер, ощупывая себя, – mais je l"ai manque belle cette fois ci, – прибавил он, указывая на отбившуюся штукатурку в стене. – Quel est cet homme? [Кажется, нет… но на этот раз близко было. Кто этот человек?] – строго взглянув на Пьера, сказал офицер.
– Ah, je suis vraiment au desespoir de ce qui vient d"arriver, [Ах, я, право, в отчаянии от того, что случилось,] – быстро говорил Пьер, совершенно забыв свою роль. – C"est un fou, un malheureux qui ne savait pas ce qu"il faisait. [Это несчастный сумасшедший, который не знал, что делал.]
Офицер подошел к Макару Алексеичу и схватил его за ворот.
Макар Алексеич, распустив губы, как бы засыпая, качался, прислонившись к стене.
– Brigand, tu me la payeras, – сказал француз, отнимая руку.
– Nous autres nous sommes clements apres la victoire: mais nous ne pardonnons pas aux traitres, [Разбойник, ты мне поплатишься за это. Наш брат милосерд после победы, но мы не прощаем изменникам,] – прибавил он с мрачной торжественностью в лице и с красивым энергическим жестом.
Пьер продолжал по французски уговаривать офицера не взыскивать с этого пьяного, безумного человека. Француз молча слушал, не изменяя мрачного вида, и вдруг с улыбкой обратился к Пьеру. Он несколько секунд молча посмотрел на него. Красивое лицо его приняло трагически нежное выражение, и он протянул руку.
– Vous m"avez sauve la vie! Vous etes Francais, [Вы спасли мне жизнь. Вы француз,] – сказал он. Для француза вывод этот был несомненен. Совершить великое дело мог только француз, а спасение жизни его, m r Ramball"я capitaine du 13 me leger [мосье Рамбаля, капитана 13 го легкого полка] – было, без сомнения, самым великим делом.
Но как ни несомненен был этот вывод и основанное на нем убеждение офицера, Пьер счел нужным разочаровать его.
– Je suis Russe, [Я русский,] – быстро сказал Пьер.
– Ти ти ти, a d"autres, [рассказывайте это другим,] – сказал француз, махая пальцем себе перед носом и улыбаясь. – Tout a l"heure vous allez me conter tout ca, – сказал он. – Charme de rencontrer un compatriote. Eh bien! qu"allons nous faire de cet homme? [Сейчас вы мне все это расскажете. Очень приятно встретить соотечественника. Ну! что же нам делать с этим человеком?] – прибавил он, обращаясь к Пьеру, уже как к своему брату. Ежели бы даже Пьер не был француз, получив раз это высшее в свете наименование, не мог же он отречься от него, говорило выражение лица и тон французского офицера. На последний вопрос Пьер еще раз объяснил, кто был Макар Алексеич, объяснил, что пред самым их приходом этот пьяный, безумный человек утащил заряженный пистолет, который не успели отнять у него, и просил оставить его поступок без наказания.
Француз выставил грудь и сделал царский жест рукой.
– Vous m"avez sauve la vie. Vous etes Francais. Vous me demandez sa grace? Je vous l"accorde. Qu"on emmene cet homme, [Вы спасли мне жизнь. Вы француз. Вы хотите, чтоб я простил его? Я прощаю его. Увести этого человека,] – быстро и энергично проговорил французский офицер, взяв под руку произведенного им за спасение его жизни во французы Пьера, и пошел с ним в дом.