Добыча метана из газовых гидратов. Газовые гидраты: миф или светлое будущее энергетической отрасли

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений.

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений. Однако вполне обоснованно полагать, что в ближайшей перспективе прогресс технологий газодобычи сможет обеспечить экономическую целесообразность разработки месторождений газовых гидратов. На основе анализа геологических условий залегания типовых газогидратных залежей и результатов численного моделирования автором выполнена оценка перспективности добычи газа из гидратов.

Газовые гидраты представляют собой твердые соединения молекул газа и воды, существующие при определенных давлениях и температурах. В одном кубометре природного гидрата содержится до 180 м3 газа и 0,78 м3 воды. Если раньше гидраты изучались с позиции технологических осложнений при добыче и транспорте природного газа, то с момента обнаружения залежей природных газовых гидратов их стали рассматривать как наиболее перспективный источник энергии. В настоящий момент известно более двухсот месторождений газовых гидратов, большая часть которых расположена на морском дне. По последним оценкам, в залежах природных газовых гидратов сосредоточено 10-1000 трлн м3 метана , что соизмеримо с запасами традиционного газа. Поэтому стремление многих стран (особенно стран-импортеров газа: США, Японии, Китая, Тайваня) освоить этот ресурс вполне объяснимо. Но, несмотря на последние успехи геологоразведочного бурения и экспериментальных исследований гидратов в пористых средах, вопрос об экономически рентабельном способе добычи газа из гидратов остается по-прежнему открытым и требует дальнейшего изучения.

Газогидратные месторождения

Самое первое упоминание о больших скоплениях газовых гидратов связано с Мессояхским месторождением, открытым в 1972 г. в Западной Сибири. Вопросами анализа разработки этого месторождения занимались многие исследователи, опубликовано более ста научных статей. Согласно работе в верхней части продуктивного разреза Мессояхского месторождения предполагается существование природных гидратов. Однако следует отметить, что прямые исследования гидратоносности месторождения (отбор керна) не проводились, а те признаки, по которым выявлены гидраты, носят косвенный характер и допускают различную трактовку .

Поэтому к настоящему моменту нет единого мнения о гидратоносности Мессояхского месторождения.

В этом отношении наиболее показательным является пример другого предполагаемого гидратоносного района - северного склона Аляски (США). Долгое время считалось, что данный район имеет значительные запасы газа в гидратном состоянии. Так, утверждалось , что в районе нефтяных месторождений Прудо Бей и Кипарук Ривер имеется шесть гидратонасыщенных пластов с запасами 1,0-1,2 трлн м3. Предположение о гидратоносности строилось на результатах опробования скважин в вероятном интервале залегания гидратов (эти интервалы характеризовались крайне низкими дебитами газа) и интерпретации геофизических материалов.

С целью изучения условий залегания гидратов на Аляске и оценки их ресурсов в конце 2002 г. компания «Анадарко» (Anadarko) совместно с Департаментом энергетики США организовала бурение разведочной скважины Хот Айс № 1 (HOT ICE #1). В начале 2004 г. скважина была закончена на проектной глубине 792 м. Тем не менее, несмотря на ряд косвенных признаков наличия гидратов (данные геофизических исследований и сейсморазведки), а также на благоприятные термобарические условия, гидратов в поднятых кернах обнаружено не было . Это еще раз подтверждает тезис о том, что единственным надежным способом обнаружения гидратных залежей является разведочное бурение с отбором керна.

На данный момент подтверждена гидратоносность лишь двух месторождений природных гидратов, представляющих наибольший интерес с точки зрения промышленного освоения: Маллик - в дельте реки Макензи на северо-западе Канады , и Нанкай - на шельфе Японии.

Месторождение Маллик

Существование природных гидратов подтверждено бурением исследовательской скважины в 1998 г. и трех скважин в 2002 г. На этом месторождении успешно проведены промысловые эксперименты по добыче газа из гидратонасыщенных интервалов. Есть все основания полагать, что оно является характерным типом континентальных гидратных месторождений, которые будут открыты в дальнейшем.

На основе геофизических исследований и изучении кернового материала выявлены три гидратосодержащих пласта (A, B, C) общей мощностью 130 м в интервале 890-1108 м. Зона вечной мерзлоты имеет мощность порядка 610 м, а зона стабильности гидрата (ЗСГ) (т.е. интервал, где термобарические условия соответствуют условиям стабильности гидратов) простирается от 225 до 1100 м. Зона стабильности гидратов определяется по точкам пересечения равновесной кривой образования гидрата пластового газа и кривой изменения температуры разреза (см. рис. 1). Верхняя точка пересечения является верхней границей ЗСГ, а нижняя точка - соответственно нижней границей ЗСГ. Равновесная температура, соответствующая нижней границе зоны стабильности гидратов, составляет 12,2°С .

Пласт А находится в интервале от 892 до 930 м, где отдельно выделяется гидратонасыщенный пропласток песчаника (907-930 м). По данным геофизики, насыщенность гидратом варьирует от 50 до 85%, остальное поровое пространство занято водой. Пористость составляет 32-38%. Верхняя часть пласта А состоит из песчаного алеврита и тонких прослоев песчаника с гидратонасыщенностью 40-75%. Визуальный осмотр поднятых на поверхность кернов выявил, что гидрат в основном занимает межзеренное поровое пространство. Данный интервал является самым холодным: разница между равновесной температурой гидратообразования и пластовой температурой превышает 4°С.

Гидратный пласт В (942-992 м) состоит из нескольких песчаных пропластков толщиной 5-10 м, разделенных тонкими прослоями (0,5-1 м) свободных от гидратов глин. Насыщенность гидратами варьирует в широких пределах от 40 до 80%. Пористость изменяется от 30 до 40%. Широкий предел изменения пористости и гидратонасыщенности объясняется слоистым строением пласта. Гидратный пласт В подстилается водоносным пропластком мощностью 10 м.

Пласт С (1070-1107 м) состоит из двух пропластков с насыщенностью гидратами в пределах 80-90% и находится в условиях, близких к равновесным. Подошва пласта С совпадает с нижней границей зоны стабильности гидратов. Пористость интервала составляет 30-40%.

Ниже зоны стабильности гидратов отмечается переходная зона газ-вода мощностью 1,4 м. После переходной зоны следует водоносный пласт мощностью 15 м.

По результатам лабораторных исследований установлено, что гидрат состоит из метана (98% и более). Изучение кернового материала показало, что пористая среда в отсутствии гидратов имеет высокую проницаемость (от 100 до 1000 мД), а при насыщении гидратами на 80% проницаемость породы падает до 0,01-0,1 мД.

Плотность запасов газа в гидратах около пробуренных разведочных скважин составила 4,15 млрд. м3 на 1 км2, а запасы в целом по месторождению - 110 млрд. м3 .

Месторождение Нанкай

На шельфе Японии уже на протяжении нескольких лет ведутся активные разведочные работы. Первые шесть скважин, пробуренных в период с 1999-2000 гг, доказали наличие трех гидратных пропластков общей мощностью 16 м в интервале 1135-1213 м от поверхности моря (290 м ниже морского дна). Породы представлены в основном песчаниками с пористостью 36% и насыщенностью гидратами порядка 80% .

В 2004 г. были пробурены уже 32 скважины при глубинах моря от 720 до 2033 м . Отдельно следует отметить успешное заканчивание в слабоустойчивых гидратных пластах вертикальной и горизонтальной (с длиной горизонтального ствола 100 м) скважин при глубине моря 991 м . Следующим этапом освоения месторождения Нанкай станет экспериментальная добыча газа из этих скважин в 2007 г. К промышленной разработке месторождения Нанкай намечается приступить в 2017 г.

Суммарный объем гидратов эквивалентен 756 млн м3 газа на 1 км2 площади в районе пробуренных разведочных скважин. В целом по шельфу Японского моря запасы газа в гидратах могут составлять от 4 трлн до 20 трлн м3 .

Гидратные месторождения в России

Основные направления поиска газовых гидратов в России сейчас сосредоточены в Охотском море и на озере Байкал . Однако наибольшие перспективы обнаружения залежей гидратов с промышленными запасами связаны с Восточно-Мессояхским месторождением в Западной Сибири . На основе анализа геолого-геофизической информации сделано предположение о том, что газсалинская пачка находится в благоприятных для гидратообразования условиях. В частности, нижняя граница зоны стабильности газогидратов находится на глубине приблизительно 715 м, т.е. верхняя часть газсалинской пачки (а в некоторых районах и вся пачка) находится в термобарических условиях, благоприятных для существования газогидратов. Опробование скважин результатов не дало, хотя по каротажу данный интервал характеризуется как продуктивный, что можно объяснить снижением проницаемости пород из-за наличия газовых гидратов. В пользу возможного существования гидратов говорит и тот факт, что газсалинская пачка является продуктивной на других рядом расположенных месторождениях. Поэтому, как отмечалось выше, необходимо бурение разведочной скважины с отбором керна. В случае положительных результатов будет открыта газогидратная залежь с запасами ~500 млрд м3.

Анализ возможных технологий разработки газогидратных залежей

Выбор технологии разработки газогидратных залежей зависит от конкретных геолого-физических условий залегания. Сейчас рассматриваются только три основных метода вызова притока газа из гидратного пласта: понижение давления ниже равновесного давления, нагрев гидратосодержащих пород выше равновесной температуры, а также их комбинация (см. рис. 2). Известный метод разложения гидратов с помощью ингибиторов вряд ли окажется приемлемым вследствие высокой стоимости ингибиторов. Другие предлагаемые методы воздействия, в частности электромагнитное, акустическое и закачка углекислого газа в пласт, пока еще мало изучены экспериментально.

Рассмотрим перспективность добычи газа из гидратов на примере задачи притока газа к вертикальной скважине, полностью вскрывшей гидратонасыщенный пласт. Тогда система уравнений, описывающих разложение гидрата в пористой среде, будет иметь вид:

а) закон сохранения массы для газа и воды:

где P - давление, T - температура, S - водонасыщенность, v - гидратонасыщенность, z - коэффициент сверхсжимаемости; r - радиальная координата; t - время; m - пористость, g, w, h - плотности газа, воды и гидрата соотвественно; k(v) - проницаемость пористой среды в присутствии гидратов; fg(S), fw(S) - функции относительных фазовых проницаемостей для газа и воды; g, w - вязкости газа и воды; - массовое содержание газа в гидрате;

б) уравнение сохранения энергии:

где Сe - теплоемкость породы и вмещающих флюидов; cg, cw - теплоемкость газа и воды соответственно; H - теплота фазового перехода гидрата; - дифференциальный адиабатический коэффициент; - коэффициент дросселирования (коэффициент Джоуля-Томсона); e - коэффициент теплопроводности породы и вмещающих флюидов.

В каждой точке пласта должно выполняться условие термодинамического равновесия:

Т = A ln P + B, (3)

где A и B - эмпирические коэффициенты.

Зависимость проницаемости породы от насыщенности гидратов принято представлять в виде степенной зависимости:

k (v) = k0 (1 - v)N, (4)

где k0 - абсолютная проницаемость пористой среды при отсутствии гидратов; N - константа, характеризующая степень ухудшения проницаемости с ростом гидратонасыщенности.

В начальный момент времени однородный и единичной мощности пласт имеет давление Р0, температуру Т0 и насыщенность гидратами v0. Метод понижения давления моделировался заданием на скважине постоянного дебита, а тепловой метод - тепловым источником постоянной мощности. Соответственно при комбинированном методе задавались постоянный расход газа и мощность теплового источника, необходимая для устойчивого разложения гидратов.

При моделировании добычи газа из гидратов рассматриваемыми методами учитывались следующие ограничения. При начальной пластовой температуре 10°С и давлении 5,74 МПа коэффициент Джоуля-Томсона составляет 3-4 градуса на 1 МПа депрессии. Таким образом, при депрессии 3-4 МПа забойная температура может достичь температуры замерзания воды. Как известно, замерзание воды в породе не только снижает проницаемость призабойной зоны, но и приводит к более катастрофическим последствиям - смятию обсадных колон, разрушению коллектора и т.д. Поэтому для метода понижения давления принималось, что за 100 суток работы скважины забойная температура не должна снизиться ниже 0°С. Для теплового метода ограничением является рост температуры на стенке скважины и самого нагревателя. Поэтому при расчетах принималось, что за 100 суток работы скважины забойная температура не должна превысить 110°С. При моделировании комбинированного метода учитывались оба ограничения.

Эффективность методов сравнивалась по максимальному дебиту вертикальной скважины, полностью вскрывшей газогидратный пласт единичной толщины, с учетом упомянутых выше ограничений. Для теплового и комбинированного методов энергетические затраты учитывались путем вычитания из дебита того количества газа, которое требуется для получения необходимой теплоты (в предположении, что теплота генерируется от сжигания части добываемого метана):

Q* = Q - E/q, (5)

где Q - дебит газа на забое, м3/сут.; E - подводимая к забою тепловая энергия, Дж/сут.; q - теплота сгорания метана (33,28.106), Дж/м3.

Расчеты проводились при следующих параметрах: P0 = 5,74 МПа; T0 = 283 К; S = 0,20; m = 0,35; h = 910кг/м3, w = 1000 кг/м3; k0 = 0,1 мкм2; N = 1 (коэффициент в формуле (4)); g = 0,014 мПа.с; w = 1 мПа.с; = 0,134; A = 7,28 К; B = 169,7 К; Сe = 1,48.106 Дж/(м3.К); cg = 2600 Дж/(кг.К), cw = 4200 Дж/(кг.К); H = 0,5 МДж/кг; e = 1,71 Вт/(м.К). Результаты расчетов сведены в табл. 1.

Анализ этих результатов расчетов показывает, что метод понижения давления является пригодным для гидратных пластов, где насыщенность гидратами невелика, а газ или вода не потеряли свою подвижность. Естественно, что при увеличении гидратонасыщенности (а значит, сокращении проницаемости согласно уравнению (4)) эффективность этого метода резко падает. Так, при насыщенности пор гидратами более 80% получить приток из гидратов за счет снижения забойного давления практически невозможно.

Другой недостаток метода снижения давления связан с техногенным образованием гидратов в призабойной зоне вследствие эффекта Джоуля-Томсона. На рис. 3 представлено распределение водо- и гидратонасыщенности, полученное в результате решения задачи притока газа к вертикальной скважине, вскрывшей газогидратный пласт. На этом рисунке отчетливо прослеживается зона незначительного разложения гидрата (I), зона вторичного гидратообразования (II) и зона фильтрации только газа (III), поскольку в этой зоне вся свободная вода перешла в гидрат.

Таким образом, разработка гидратных залежей за счет понижения давления возможна только при закачке ингибиторов в призабойную зону, что значительно увеличит себестоимость добываемого газа.

Тепловой метод разработки газогидратных месторождений пригоден для пластов, имеющих высокое содержание гидратов в порах. Однако, как показывают результаты расчетов, тепловое воздействие через забой скважины малоэффективно. Это связано с тем, что процесс разложения гидратов сопровождается поглощением тепла с высокой удельной энтальпией 0,5 МДж/кг (для примера: теплота плавления льда составляет 0,34 МДж/кг). По мере удаления фронта разложения от забоя скважины все больше энергии тратится на прогрев вмещающих пород и кровли пласта, поэтому зона теплового воздействия на гидраты через забой скважины исчисляется первыми метрами. На рис. 4 представлена динамика растепления полностью насыщенного гидратами пласта. Из этого рисунка видно, что за 100 суток непрерывного прогрева разложение гидратов произойдет в радиусе всего 3,5 метра от стенки скважины.

Наибольшие перспективы имеет комбинированный метод, состоящий в одновременном снижении давления и подводе тепла к скважине. Причем основное разложение гидрата происходит за счет снижения давления, а подводимая к забою теплота позволяет сократить зону вторичного гидратообразования, что положительно сказывается на дебите. Недостатком комбинированного метода (как и теплового) является большое количество попутно добываемой воды (см. табл. 1).

Заключение

Таким образом, при современном уровне нефтегазовых технологий трудно ожидать, что себестоимость добываемого газа из гидратов будет сопоставима с аналогичным показателем традиционных газовых месторождений. Это обусловлено большими проблемами и сложностями, возникающими перед разработчиками и исследователями. Однако уже сейчас газовые гидраты можно сравнить с другим нетрадиционным источником газа - метаном угольных пластов. Еще двадцать лет назад считалось, что добывать метан из угольных бассейнов технически сложно и невыгодно. Теперь только в США ежегодно добывается порядка 45 млрд м3 из более 10 тыс. скважин, что достигнуто за счет развития нефтегазовой науки и создания новейших технологий газодобычи. По аналогии с угольным метаном можно сделать вывод (см. табл. 2), что добыча газа из гидратов может оказаться вполне рентабельной и начнется в ближайшей перспективе.

Литература

1. Lerche Ian. Estimates of Worldwide Gas Hydrate Resources. Paper OTC 13036, presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3May 2001.

2. Makogon, Y.F., Holditch, S.A., Makogon T.Y. Russian field illustrates gashydrate production. Oil&Gas Journal, Feb.7, 2005, vol. 103.5, pp. 43-47.

3. Гинсбург Г.Д., Новожилов А.А. О гидратах в недрах Мессояхского месторождения.// «Газовая промышленность», 1997 г., №2.

4. Collett, T.S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska: AAPG Bull., Vol. 77, No. 5, 1993, pp. 793-812.

5. Ali G. Kadaster, Keith K. Millheim, Tommy W. Thompson. The planning and drilling of Hot Ice # 1 - Gas Hydrate Exploration Well in the Alaskan Arctic. Paper SPE/IADC 92764 presented at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, 23-25 February 2005.

6. Dallimore, S., Collett, T., Uchida, T. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin 544, 1999, p. 403.

7. Takahashi, H., Yonezawa, T., Takedomi, Y. Exploration for Natural Hydrate in Nankai-Trough Wells Offshore Japan. Paper presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3 May 2001. OTC 13040.

8. Takahashi, H., Tsuji, Y. Japan explores for hydrates in the Nankai Trough. Oil&Gas Journal, Sept.5, 2005, vol. 103.33, pp. 48-53.

9. Takahashi, H., Tsuji, Y. Japan drills, logs gas hydrate wells in the Nankai Trough. Oil&Gas Journal, Sept.12, 2005, vol. 103.34, pp. 37-42,

10. Соловьев В.А. Газогидратоносность недр Мирового Океана// «Газовая промышленность», 2001 г., №12.

11. Агалаков С.Е. Газовые гидраты в Туронских отложениях на севере Западной Сибири// «Геология нефти и газа», 1997г., №3.

Не секрет, что в настоящее время традиционные источники углеводородов все активнее истощаются, и этот факт заставляет человечество задуматься об энергетике будущего. Поэтому векторы развития многих игроков на международном нефтегазовом рынке направлены на освоение месторождений нетрадиционных углеводородов.

Вслед за «сланцевой революцией» резко возрос интерес и к другим видам нетрадиционного природного газа таких, как газогидраты (ГГ).

Что представляют из себя газовые гидраты?

Газовые гидраты внешне очень похожи на снег или рыхлый лед, который внутри себя таит энергию природного газа. Если рассматривать с научной стороны, то газогидрат (их еще называют клатратами) - это несколько молекул воды, удерживающих внутри своего соединения молекулу метана или другого углеводородного газа. Образуются газовые гидраты при определенных температурах и давлениях, что дает возможность существовать такому «льду» в плюсовых температурах.

Образование газогидратных отложений (пробок) внутри различных объектов нефтегазового промысла является причиной крупных и частых аварий. К примеру, по одной из версий, причиной крупнейшей аварии в Мексиканском заливе на платформе Deepwater Horizon стала гидратная пробка, образовавшаяся в одной из труб.

Благодаря своим уникальным свойствам, а именно - высокой удельной концентрации метана в соединениях, большой распространённости по побережьям, природные газогидраты с середины XIX века считаются основным источником углеводородов на Земле, составляя примерно 60% от общего объема запасов. Странно, не правда ли? Ведь мы привыкли слышать из СМИ только о природном газе и нефти, но, возможно, в перспективе 20−25 лет борьба будет идти уже за другой ресурс.

Для понимая всей масштабности газогидратных залежей, скажем, что, например, общий объём воздуха в атмосфере Земли в 1,8 раза меньше предположительных объёмов газогидратов. Основные скопления газогидратов расположены в непосредственной близости к полуострову Сахалин, шельфовых зонах северных морей России, северном склоне Аляски, вблизи островов Японии и южном побережье Северной Америки.

В России содержится около 30 000 трлн. куб. м. гидратного газа, что на три порядка превышает объемы традиционного природного газа на сегодняшний день (32,6 трлн. куб. м.).

Важной проблемой является экономическая составляющая при разработке и коммерциализации газовых гидратов. Уж слишком дорого сегодня их добывать.

Если бы сегодня к нашим с вами плитам и котлам поступал бытовой газ добытый из газовых гидратов, то 1 кубометр стоил бы, примерно, в 18 раз дороже.

Как их добывают?

Добывать клатраты сегодня можно различными способами. Есть две основными группы методов - добыча в газообразном состоянии и в твердом состоянии.

Наиболее перспективной считается добыча в газообразном состоянии, а именно метод разгерметизации. Вскрывают залежь, где располагаются газогидраты, давление начинает падать, что выводит «газовый снег» из равновесия, и он начинает распадаться на газ и воду. Данную технологию уже применили Японцы в своем пилотном проекте.

Российские проекты по исследованию и разработке газовых гидратов начались еще во времена СССР и считаются фундаментальными в данной области. В связи с открытием большого числа традиционных месторождений природного газа, отличающихся экономической привлекательностью и доступностью, все проекты были приостановлены, а накопленный опыт перешел к зарубежным исследователям, оставляя не у дел многие перспективные разработки.

Где применяют газовые гидраты?

Малоизвестный, но очень перспективный энергоресурс можно применять не только для топки печей и приготовления пищи. Результатом инновационной деятельности можно считать технологию транспортировки природного газа в гидратном состоянии (HNG). Звучит очень сложно и страшно, но на практике все более, чем понятно. Человек придумал «упаковывать» добытый природный газ не в трубу и не в резервуары танкера СПГ (сжижение природного газа), а в ледяную оболочку, проще говоря - делать искусственные газовые гидраты для транспортировки газа к потребителю.

При сопоставимых объёмах поставок товарного газа эти технологии потребляют на 14% меньше энергии , чем технологии сжижения газа (при перевозке на небольшие расстояния) и на 6% меньше при перевозках на расстояния в несколько тысяч километров, требуют наименьшего снижения температуры хранения (-20 градусов C против -162). Обобщая все факторы, можно сделать вывод - газогидратный транспорт экономичнее транспорта в сжиженном состоянии на 12−30%.

При гидратном транспорте газа потребитель получает два продукта: метан и пресную (дистиллированную) воду, что делает подобный транспорт газа особо привлекательным для потребителей, расположенных в засушливых либо заполярных районах (на каждые 170 куб. м. газа приходится 0,78 куб. м. воды).

Подводя итоги можно сказать, что газовые гидраты являются основным энергоресурсом будущего в мировом масштабе, а также несут колоссальные перспективы для нефтегазового комплекса нашей страны. Но это очень дальновидные перспективы, эффект от которых мы сможем увидеть через 20, а то и через 30 лет, не ранее.

Не принимая участие в масштабной разработке газовых гидратов, российский нефтегазовый комплекс может столкнуться с некоторыми значительными рисками. Увы, сегодняшние низкие цены на углеводороды и экономический кризис все больше и больше ставят под вопрос исследовательские проекты и начало промышленной разработки газовых гидратов, особенно в нашей стране.

Национальный минерально-сырьевой университет Горный

Научный руководитель: Гульков Юрий Владимирович, кандидат технических наук, Национальный минерально-сырьевой университет Горный

Аннотация:

В данной статье рассматриваются химические и физические свойства газовых гидратов, история их изучения и исследования. Кроем того, рассматриваются основные проблемы, препятствующие организации коммерческой добычи газовых гидратов.

In this article we describes chemical and physical characteristics of gas hydrates, the history of their study and research. In addition, the basic problems hindering the organization of commercial production of gas hydrates аре considered.

Ключевые слова:

газогидраты; энергетика; коммерческая добыча; проблемы.

gas hydrates; power engineering; commercial extraction; рroblems.

УДК 622.324

Введение

Первоначально человек использовал собственные силы как источник энергии. Через некоторое время на помощь пришли энергия дерева и органики. Около века назад основным энергоресурсом стал уголь, через 30 лет его первенство разделила нефть. Сегодня энергетика мира зиждется на триаде газ-нефть-уголь. Однако, в 2013 году это равновесие было смещено с в сторону газа японскими энергетиками. Япония- мировой лидер импорта газа. Государственная корпорация нефти, газа и металлов (JOGMEC) (Japan Oil, Gas & Metals National Corp.) сумела первой в мире получить газ из гидрата метана на дне Тихого океана с глубины 1,3 километра . Пробная добыча длилась всего 6 недель, не смотря на то, что в плане рассматривалась двухнедельная добыча, было добыто 120 тыс куб м природного газа Это открытие позволит стране стать независимой от импорта, в корне изменить свою экономику. Что такое газогидрат и как он может повлиять на мировую энергетику?

Целью данной статьи является рассмотрение проблем в освоении газогидратов.

Для этого были поставлены следующие задачи:

  • Изучить историю исследования газогидратов
  • Изучить химические и физические свойства
  • Рассмотреть основные проблемы освоения

Актуальность

Традиционные ресурсы распределены по Земле не равномерно, кроме того, они ограничены. По современным оценкам запасов нефти по сегодняшним меркам потребления хватит на 40 лет, энергоресурсов природного газа- на 60-100. Мировые же запасы сланцевого газа оцениваются примерно в 2 500-20 000 трлн. куб. м. Это энергетический резерв человечества более чем на тысячу лет Коммерческая добыча гидратов подняла бы мировую энергетику на качественно новый уровень. Другими словами, изучение газогидратов открыло перед человечеством альтернативный источник энергии. Но существует и ряд серьезных препятствий их изучению и коммерческой добычи.

Историческая справка

Возможность существования газогидратов была предсказала Стрижовым И.Н., но он говорил о нецелесообразности их добычи. Гидрат метана в лаборатории впервые получил Виллар в 1888 году, вместе с гидратами других легких углеводородов. Первоначальные столкновения с газогидратами, рассматривались как проблемы и помехи в добыче энергии. В первой половине XX века было установлено, что газогидраты являются причиной пробкообразования в газопроводах, расположенных в арктических районах (при температуре выше 0 °С). В 1961г. было зарегистрировано открытие Васильева В.Г., Макагона Ю.Ф., ТребинаФ.А., Трофимука А.А., Черского Н.В. «Свойство природных газов находиться в твердом состоянии вземной коре» , возвестившее о новом природном источнике углеводородов- газогидрате. После этого заговорили об исчерпаемости традиционных ресурсов громче, и уже через 10 лет было обнаружено первое месторождения газогидратов в январе 1970 в Заполярье, на границе Западной Сибири, оно носит название Мессояхское. Далее были проведены крупные экспедиции ученых как СССР, так и многих других стран.

Слово химии и физики

Газогидраты - это молекулы газа, облепленные вокруг молекулами воды, словно «газ в клетке». Это называется водный клатратный каркас. Представьте, что летом вы поймали бабочку в ладони, бабочка- это газ, ваши ладони-молекулы воды. Т.к вы охраняете бабочку от внешних воздействий, но она сохранит свою красоту и индивидуальность. Так и газ ведет себя в клатратном каркасе.

В зависимости от условий образования и состояния гидратообразователя внешне гидраты выглядят в виде четко выраженных прозрачных кристаллов разнообразной формы или представляют собой аморфную массу плотно спрессованного «снега».

Гидраты залегают при определенных термобарических условиях- фазовое равновесие. При атмосферном давлении газовые гидраты природных газов существуют вплоть до 20-25 °C. Благодаря своей структуре единичный объём газового гидрата может содержать до 160—180 объёмов чистого газа. Плотность гидрата метана около 900 кг/м³, что ниже плотности воды и льда. При нарушении фазового равновесия: повышении температуры и/ или уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа, обладают низкой теплопроводностью.

Разработка

Газогидраты труднодоступны,т.к. к настоящему времени установлено, что около 98% залежей газогидратов сосредоточены на шельфе и континентальном склоне океана, на глубинах воды более 200 - 700 м, и только всего 2% - в приполярных частях материков. Поэтому, проблемы в освоении коммерческой добычи газовых гидратов встречаются уже на этапе разработки их месторождений.

На сегодняшний день существует несколько методов обнаружения залежей газовых гидратов: сейсмическое зондирование, гравиметрический метод, измерение теплового и диффузного потоков над залежью, изучение динамики электромагнитного поля в исследуемом регионе и др.

При сейсмическом зондировании используются данные двухмерной (2-D) сейсморазведки при наличии свободного газа под гидратонасыщенным пластом определяется нижнее положение гидратонасыщенных пород. Но при сейсморазведке нельзя обнаружить качество залежи, степень гидратонасыщенности пород. Кроме того, сейсморазведка не применима на сложных рельефах.Но она выгодна более всех с экономической стороны, однако, лучше ее использовать в дополнении с другими методами.

Например, пробелы можно заполнить применив в дополнении с сейсморазведке электромагнитную разведку. Она позволит более точно охарактеризовать породу, благодаря индивидуальным сопротивлениям в точках залегания газогидратов. Министерство энергетики США планирует проводить ее с 2015 года. Сейсмоэлектромагнитный способ применялся для разработки Черноморских месторождений.

Также рентабельно разрабатывать месторождение насыщенных залежей комбинированным методом разработки, когда процесс разложения гидратов сопровождается снижением давления с одновременным тепловым воздействием. Понижение давления позволит сэкономить тепловую энергию, затрачиваемую на диссоциацию гидратов, а прогрев поровой среды будет препятствовать повторному образованию газогидратов в призабойной зоне пласта.

Добыча

Следующим камнем преткновения является непосредственно добыча гидратов. Гидраты залегают в твердой форме, что вызывает трудности. Так как газогидрат залегает в определенных термобарических условиях, то при нарушении одного из них он будет разлагаться на газ и воду, в соответствии с этим были разработаны следующие технологии извлечения гидратов.

1. Разгерметизация:

Выводы гидрат из фазового равновесия он разложится на газ и воду. Эта технология славится своей тривиальностью и экономической целесообразностью, кроме того на ее плечи ложится успех первой добычи японцев 2013 года. Но не все так радужно: образовавшаяся вода при низких температурах может закупорить оборудование. Кроем того, технология действительно эффективна, т.к. при проведении пробной добычи метана на месторождении Маллик за 5,5 дней было добыто 13 000 куб. м газа, что во много раз превышает показатели добычи на этом же месторождении по технологии нагревания — 470 куб. м газа за 5 дней. (см. таблица)

2. Нагревание:

Снова нужно разложить гидрат на газ и воду но уже по средствам подведения тепла. Подвод тепла может осуществляться разными способами: впрыскивание теплоносителя, циркуляция горячей воды, нагрев паром, нагрев электричеством. Хотелось бы остановиться на интересной технологии придуманий исследователями из Дортмундского университета. Проект предполагает прокладку трубопровода до залежей газогидратов на морском дне. Особенность его в том, что у трубы двойные стенки. По внутренней трубе к месторождению подается морская вода, нагретая до 30-40˚С, температуры фазового перехода, и пузырьки газообразного метана вместе с водой поднимаются по внешней трубе наверх. Там метан отделяется от воды, отправляется в цистерны или в магистральный трубопровод, а теплая вода возвращается вниз, к залежам газогидратов. Однако, этот метод добычи требует высоких затрат, постоянного увеличения подводимого количества теплоты. При этом газогидрат разлагается медленнее.

3. Введение ингибитора:

Также для разложения гидрата использую ввод ингибитора. В Институте Физики и Технологии Университета Бергена в качестве ингибитора рассмотрели углекислый газ. С помощью этой технологии можно получить метан без непосредственной добыче самих гидратов. Этот метод уже тестируется Японской Национальной Корпорацией Нефти, Газа и Металлов (JOGMEC) при поддержке Американского Департамента Энергетики. Но эта технология таит в себе экологическую опасность, требует высоких затрат. Реакции при этом протекает медленнее.

Название проекта

Дата

Страны-участницы

Компании

Технология

Маллик, Канада

Япония, Канала США, Германия, Индия

JOGMEC, BP, Chevron Texaco

Нагреватель (теплоноситель-вода)

Северный склон Аляски, США

США, Япония

Conoco Phillips, JOGMEC

Инъекция углекислого газа, ввод ингибитора

Аляска, США

BP, Schlumberger

Бурение с целью изучения свойств газогидрата

Маллик, Канада

Япония, Канада

JOGMEC в составе частного государственного консорциума

Разгерметизация

Огонь во льду (Ignik Sikumi ),

Аляска, США

США, Япония, Норвегия

Conoco Phillips, JOGMEС, университет Бергена (Норвегия)

Инъекция углекислого газа

Совместный проект (Joint Industry Project ) Мексиканский залив, США

Chevron как лидер консорциума

Бурение с целью изучения геологии залегания газогидратов

Вблизи полуострова Ацуми, Япония

JOGMEC, JAPEX, Japan Drilling

Разгерметизация

Источник - аналитический центр по материалам открытых источников

Технологии

Еще одной причиной неосвоенности коммерческой добычи гидратов -отсутствие технология для их выгодной добычи, что провоцирует большие капиталовложения. В зависимости от технологии, встречаются разные барьеры: эксплуатация специального оборудования для введения химических элементов и/или локального нагрева для избегания повторного образования газогидратов и закупоривания скважин; применения технологий, препятствующих добыче песка.

Например, в 2008 году по предварительным оценкам для месторождения Маллик в канадской Арктике указывали на то, что издержки разработки варьируются в пределах 195-230 долл./тыс. куб. м для газогидратов, расположенных над свободным газом, и в пределах 250- 365 долл./тыс. куб. м для газогидратов, расположенных над свободной водой.

Для решения этой проблем необходимо популяризовать коммерческую добычу гидратов среди научных кадров. Организовывать больше научных конференций, конкурсов для усовершенствования старого либо создания нового оборудования, что могло бы обеспечить меньше издержки.

Экологическая опасность

Более того, разработка газогидратных месторождений неизбежно приведет к увеличению объемов выброса природного газа в атмосферу и, как следствие, к усилению парникового эффекта. Метан является мощным парниковым газом и, несмотря на то, что его время жизни в атмосфере меньше, чем у СО₂, потепление, вызванное выбросами в атмосферу больших количеств метана, будет в десятки раз быстрее, чем потепление, вызванное углекислым газом. Кроме этого, если глобальное потепление, парниковый эффект или по другим причинам будет вызван распад хотя бы одного месторождения газогидратов, то это вызовет колоссальный выброс метана в атмосферу. И, словно лавина, от одного залегания до другого, это приведет к глобальным изменения климата на Земле, а последствия этих изменений даже приблизительно предсказать нельзя.

Во избежание этого необходима интеграция данных комплексных анализов разведки, прогнозирование возможных поведения залежей.

Детонация

Еще одной нерешенной задачей для добытчиков становится весьма неприятное свойство газогидратов «детонировать» при самых незначительных сотрясениях. При этом кристаллы быстро проходят фазу трансформации в газообразное состояние, и обретают объем в несколько десятков раз превышающий исходный. Поэтому в сообщениях японских геологов очень аккуратно говорится о перспективе разработки метангидратов - ведь катастрофа буровой платформы Deepwater Horizon, по мнению ряда ученых, включая профессора Калифорнийского университета в Беркли Роберта Би, стала следствием взрыва гигантского пузыря метана, который образовался из потревоженных буровиками донных залежей гидратов.

Добыча нефти и газа

Газогидраты рассматриваются не только со стороны энергетического ресурса, чаще с ними сталкиваются при добычи нефти. И снова мы обратимся к гибели платформы Deepwater Horizon в Мексиканском заливе. Тогда для контроля над вырывающейся нефтью соорудили специальный короб, который планировали поставить над аварийным устьем скважины. Но нефть оказалась весьма газированной, и метан стал образовывать на стенках короба целые наледи газогидратов. Они примерно на 10% легче воды, и когда количество газогидратов стало достаточно большим, они просто стали поднимать короб, что, в общем-то, заранее предсказывалось специалистами.

С той же проблемой столкнулись при добыче традиционного газа. Кроме «природных» газовых гидратов, образование газовых гидратов является большой проблемой в магистральных газопроводах, расположенных в условиях умеренного и холодного климата, поскольку газовые гидраты способны забить газопровод и снизить его пропускную способность. Для того, чтобы этого не происходило, в природный газ добавляют небольшое количество ингибитора и ли же просто используют подогрев.

Эти проблемы решают такими же способами как и при добычи: понижая давления, нагревая, вводя ингибитор.

Заключение

В данной статье были рассмотрены барьеры, стоящие на пути коммерческой добычи газогидратов. Они встречаются уже на этапе разработке газовых месторождений, непосредственно при самой добычи. Кроме того, на данный момент газогидраты являются проблемой при нефте- и газодобычи. На сегодняшний день, впечатляющие запасы газогидратов, экономическая рентабельность требуют накопления информации и уточнений. Специалисты до сих пор находятся в поиске оптимальных решений разработки газигидратных месторождений. Но с развитием технологий стоимость разработки залежей должна снизиться.

Библиографический список:


1. Васильев А., Димитров Л. Оценка пространственного распределения и запасов газогидратов в Черном море // Геология и геофизика. 2002. №7. т. 43.
2. Дядин Ю. А., Гущин А.Л. Газовые гидраты. // Соросовский образовательный журнал, №3, 1998, с. 55–64
3. Макогон Ю.Ф. Природные газовые гидраты: распространение, модели образования, ресурсы. – 70 с.
4. Трофимук А. А., Макогон Ю. Ф., Толкачев М. В., Черский Н. В. Особенности обнаружения разведки и разработки газогидратных залежей -2013 г. [Электронный ресурс] http://vimpelneft.com/fotogalereya/6-komanda-vymlnefti/detail/32-komanda-vympelnefti
5. Химия и Жизнь, 2006, №6, стр. 8.
6. The Day The Earth Nearly Died – 5. 12. 2002 [электронный ресурс] http://www.bbc.co.uk/science/horizon/2002/dayearthdied.shtml

Рецензии:

1.12.2015, 12:12 Мордашев Владимир Михайлович
Рецензия : Статья посвящена широкому кругу проблем, связанных с актуальной задачей освоения газогидратов - перспективного энергетического ресурса. Решение этих проблем потребует, в том числе, анализа и обобщения разнородных данных научных и технологических исследований, носящих зачастую неупорядоченный, хаотический характер. Поэтому рецензент рекомендует авторам в своей дальнейшей работе обратить внимание на статью "Эмпиризм для хаоса", сайт, №24, 2015, с. 124-128. Статья "Проблемы освоения газогидратов" представляет несомненный интерес для широкого круга специалистов, её следует опубликовать.

18.12.2015 2:02 Ответ на рецензию автора Курикова Полина Робертовна :
Ознакомилась со статьей, при дальнейшей разработке темы,решении освещенных проблем, буду пользоваться данными рекомендациями. Благодарю.


По мере того как лозунг «XXI век – век газа» проникает в общественное сознание, растет интерес и к такому нетрадиционному источнику газа, как залежи газогидратов.

Мировой энергетический рынок оперирует цифрами запасов нефти и газа в тех или иных регионах. На них, собственно, и базируется мировая конъюнктура спроса и предложения на углеводородное сырье. Сотни экспертов неустанно анализируют сроки выработки невосполнимых ресурсов. 20 лет? Ну, хорошо, 30 лет. Что потом? За счет чего будет формироваться энергетический баланс планеты? Какие альтернативные нефти и газу энергоносители будут представлять коммерческий интерес не в столь отдаленном будущем? Один из ответов, похоже, уже есть. Метан газогидратных залежей. На суше уже выявлено несколько месторождений и проведена пробная добыча в зонах вечной мерзлоты России, Канады и Аляски. Геофизики разных стран, занимающиеся изучением газовых гидратов, пришли к выводу, что запасы газового гидрата в сотни раз превышают запасы нефти и природного газа. «Планета буквально напичкана газогидратами», – уверенно заявляют многие. Если прогнозируемые запасы газа на планете составляют от 300 до 600 трлн кубометров, то прогнозные запасы газового гидрата – более 25 000 трлн кубометров. На них человечество, абсолютно не ограничивая потребление энергии, может безбедно жить сотни лет.

Газовые гидраты (или газогидраты) – молекулы газа, чаще всего метана, «вделанные» в ледяную или водяную кристаллическую решетку. Газовый гидрат образуется при высоких давлениях и низких температурах, поэтому в природе встречается либо в осадках глубоководных морских акваторий, либо в сухопутной зоне вечной мерзлоты, на глубине несколько сотен метров ниже уровня моря. В процессе формирования этих соединений при низких температурах в условиях повышенного давления молекулы метана преобразуются в кристаллы гидратов с образованием твердого вещества, по консистенции похожего на рыхлый лед. В результате молекулярного уплотнения один кубометр природного метан-гидрата в твердом состоянии содержит около 164 м 3 метана в газовой фазе и 0,87 м 3 воды. Как правило, под ними находятся немалые запасы подгидратного газа. Предполагается весь спектр – от крупных пространственных полей массивных скоплений до рассеянного состояния, включая любые иные, доселе не известные формы.

Предположение о том, что на глубине нескольких сотен метров ниже морского дна находится зона, содержащая газогидраты, впервые было высказано российскими океанологами. Позднее оно было подтверждено геофизиками многих стран. С конца 1970-х годов в рамках международных океанологических программ начались целенаправленные исследования океанического дна на поиски газогидратов. Регионально-геофизические, сейсмические, геоморфологические, акустические исследования сопровождались бурением в общей сложности нескольких тысяч скважин на глубине воды в пределах до 7 000 м, из которых было отобрано 250 км керна. В результате этих работ, организованных научными институтами и университетскими лабораториями разных стран, на сегодня детально исследованы первые сотни метров дна Мирового океана суммарной площадью 360 млн км 2 . В итоге обнаружены многочисленные свидетельства наличия газогидратов в придонной части осадочной толщи океанов, преимущественно вдоль восточной и западной окраин Тихого океана, а также восточных окраин Атлантического океана. Однако, в основном, эти свидетельства основываются на косвенных данных, полученных по результатам сейсмики, анализов, каротажа и др. К фактически же доказанным можно отнести лишь несколько крупных скоплений, наиболее известное из которых расположено в зоне океанической гряды Блейка у юго-восточного побережья США. Там в виде единого протяженного поля на глубине воды 2,5–3,5 км может содержаться около 30 трлн м 3 метана.

Несмотря на наличие в океане большого количества газогидратов, в качестве альтернативного источника природного газа они могут рассматриваться только в отдаленной перспективе. Мнение нефтяников, выраженное в докладе компании Chevron сенату США в 1998 году, звучит еще более жестко. Оно сводится к тому, что в пределах океана газогидраты находятся преимущественно в рассеянном состоянии или в небольших концентрациях и не представляют коммерческого интереса. К такому же заключению пришли и геологи российского «Газпрома».

Есть и другие точки зрения. Если поднять газогидраты из глубины моря на поверхность, то можно наблюдать поразительный эффект – газогидраты начнут пузыриться, шипеть и на глазах распадаться. Впервые российские ученые увидели такую картину в 70-е годы прошлого века, когда во время экспедиции в Охотское море со дна на палубу корабля были подняты первые образцы «ледяного газа». Самое интересное, что при «таянии» газогидрата твердое вещество, минуя жидкую фазу, переходит в газ, который таит в себе огромную энергию. Если этот газ выпустить на волю сразу, он может вызвать экологическую катастрофу. Но если его обуздать, польза будет великая. Ведь энергетические запасы газогидратов намного выше, чем залежи нефти и газа. Так считают многие исследователи.

Согласно имеющимся на сегодняшний день подсчётам, ориентировочное количество метана, содержащегося в виде кристаллогидратов в донных отложениях Мирового океана и в вечной мерзлоте, составляет не менее 250 000 трлн м 3 . В пересчете на традиционные виды топлива это более чем вдвое превышает количество имеющихся на планете запасов нефти, угля и газа вместе взятых.

Природные газогидраты сохраняют стабильность или при очень низких температурах в условиях вечномерзлых пород на суше, или в режиме сочетания низкой температуры и высокого давления, который присутствует в придонной части осадочной толщи глубоководных районов Мирового океана. Установлено, что зона стабильности газогидратов (ЗСГ) в условиях открытого океана простирается начиная с глубины воды примерно 450 м и далее под океаническим дном до уровня геотермального градиента осадочных пород. Для обнаружения газогидратов используются геофизические методы, а также бурение осадочных пород. Гораздо реже газогидраты встречаются вблизи морского дна (на глубине нескольких метров от его поверхности) в пределах газовыделяющих структур, похожих на грязевые вулканы. Так происходит, например, на Черном, Каспийском, Средиземном и Охотском морях. Мощность ЗСГ повсеместно составляет примерно несколько сотен метров. Потенциальные ресурсы метана находятся не только в пределах ЗСГ в твердом виде, но и запечатаны под ней в естественном газовом состоянии. По большинству оценок, в океанах содержится примерно вдвое больше метана, чем во всех других видах горючих ископаемых, обнаруженных на материках и в пределах шельфовой зоны. Правда, есть и скептики, которые считают эту оценку сильно завышенной. Вопрос, однако, не только в количестве метана.

Главное – какая часть этого газа пребывает не в рассеянном состоянии, а сконцентрирована в скопления, достаточно крупные для обеспечения рентабельности их разработки. На сегодня нет четкого представления о форме нахождения газогидратов в океане.

В отличие от океанических, скопления газогидратов на суше и в зоне прилегающего шельфа рассматриваются в ракурсе вполне реальной перспективы. Впервые газогидратная залежь на суше была открыта в 1964 г. в России на месторождении Мессояха в Западной Сибири. Там же на протяжении первой половины 1970-х гг. проводилась и первая в мире опытная добыча. Позднее аналогичные залежи были обнаружены в районе дельты реки Маккензи в Канаде. Первые крупномасштабные исследования скоплений газогидратов на суше и прилегающем шельфе проводились под эгидой Департамента по энергетике США в 1982–1991 гг. За десятилетие было установлено присутствие залежей твердого метана на Аляске, изучено 15 зон скопления газогидратов на шельфе, проведено моделирование процессов депрессирования гидратных соединений и термального извлечения газообразного метана. На месторождении Прадхо Бей на Аляске была осуществлена пробная добыча метана. Ресурсы газа газогидратных залежей in situ на суше и шельфе США оценены в 6 000 трлн м 3 . Это значит, что извлекаемые запасы, даже при коэффициенте извлечения не более 1 % составляют 60 трлн м 3 , что вдвое больше, чем суммарные доказанные запасы всех традиционных месторождений газа США.

В самые последние годы, после опубликования результатов программы геологической службы США, интерес к залежам газогидратов на суше резко вырос и географически расширился. В 1995 г. японское правительство инициировало аналогичную программу на шельфе страны. По утверждению японских геологов, к настоящему времени степень изученности выявленных ресурсов приближается к той стадии, когда их можно переводить в категорию запасов. В 1998 г. в Канаде в дельте реки Маккензи была пробурена экспериментальная скважина Mallik , по данным которой было установлено наличие протяженного поля скоплений газогидратов, их суммарный массив оценен в 4 млрд м 3 /км 2 . Эти исследования проводятся Japan Petroleum Exploration Co ., Ltd . и рядом японских промышленных компаний с участием геологической службы США, Канады и нескольких университетов. С 1996 г. исследования шельфовой зоны и картирование выявленных скоплений, под эгидой правительства и силами государственной газовой компании страны ведутся в Индии. Европейский Союз принял решение о создании специальных фондов по финансированию аналогичных программ, а в США интерес к газогидратным залежам приобрел законодательный статус: в 1999 г. Конгресс США одобрил специальный акт, касающийся разработки широкомасштабной программы поисков и разработки метангидратных залежей на суше и шельфах страны.

Добыча газогидратов пока не имеет стандартных промышленных технологий. Некоторые эксперты считают, что Россия – самая богатая страна по залежам природного газа, его запасов хватит еще на 200–250 лет, так что промышленная добыча газогидратов пока не является для нашей страны задачей первостепенной важности.

Метан из газогидратных залежей – энергоноситель будущего, которое, по самым оптимистичным оценкам, наступит не ранее второго десятилетия XXI в. Вообще надежным показателем степени перспективности всякого нового направления служат крупные иностранные компании: интерес, который они начинают проявлять к той или иной области нефтегазового бизнеса, обычно является первым симптомом появления новых тенденций. Не случайно в реестре большинства компаний за последние годы выросла доля активов, связанных с газом; именно крупные нефтяные компании ведут массированное наступление на глубоководный шельф; закономерно и то, что в новом, пока мало коммерческом направлении, связанном с переработкой природного газа в жидкое топливо (Gas to liquids , GTL ) фигурируют компании ARCO , BP , Amoco , Chevron , Exxon , Shell и другие. А вот к природным газогидратам нефтяные компании пока интереса не проявляют.

Между тем, представители экологических организаций предупреждают, что активное использование метана, извлекаемого из гидратов, ещё более усугубит ситуацию с потеплением климата, поскольку метан оказывает более сильный «парниковый» эффект, чем углекислый газ. Кроме того, некоторые учёные высказывают опасения, что добыча гидратов метана на морском дне может привести к непредсказуемым изменениям его геологической структуры.

Установлено, что из одного литра «твердого топлива» можно получить 168 литров газа. Поэтому в ряде стран, таких как США, Япония, Индия, уже разработаны национальные программы исследования промышленного использования газовых гидратов в качестве перспективного источника энергии. Так, индийская национальная программа нацелена на широкомасштабное исследование месторождений природных газовых гидратов, находящихся в пределах континентального склона вокруг полуострова Индостан. Индийское правительство выделило значительные средства для реализации этой программы. В соответствии с ней Индия намеривается начать промышленную добычу природного газа из газовых гидратов.

Генеральный директорат по углеводородам (DGH ) является пионером разведки на газогидраты в Индии. Съемки, проведенные Директоратом в 1997 г. на Восточном побережье и в Андаманской глубоководной области, привели к обнаружению наиболее перспективных на газогидраты районов (рис. 1.2). Общие прогнозные ресурсы газа с учетом газогидратов на индийских шельфах оцениваются в 40–120 трлн м 3 . Особенно перспективными считаются Андаманские острова, где запасы гидратного и свободного газа оцениваются в 6 трлн м 3 .

Рис. 1.2. Карта перспективных по газогидратоносности районов шельфа Индии

Некоторые участки, находящиеся на глубинах 1 300–1 500 м, предназначены для бурения в первую очередь, не только для проверки наличия газогидратов, но и свободного газа.

Правительство Индии разработало национальную программу по газогидратам (НПГ), нацеленную на разведку и освоение ресурсов газогидратов в стране. Директорат – активный участник этой программы. Глава Директората является координатором технического комитета НПГ. Пересмотрены данные сейсмосъемок морской части Сауратры и всего западного и восточного побережья Индии в целях определения лучших районов для дальнейших исследований на газогидраты; были определены также две «модельные лабораторные зоны», по одной на каждое побережье. В рамках НПГ в этих зонах Национальным институтом океанографии собрана дополнительная информация, которая позволит подобрать места для бурения и получения керна. Имеется соглашение о международном сотрудничестве между Индией и консорциумом, объединяющим японские, американские, канадские и немецкие компании.

О возможном присутствии газогидратов в осадках оз. Байкал впервые заговорили в 1992 г. на основании результатов российско-американской глубинной сейсмической экспедиции, исследовавшей Южную и Центральную котловины озера. Сейсмический сигнал, известный как BSR (Bottom Simulating Reflector – кажущаяся отражающая граница), был зафиксирован в сейсмических профилях на глубине нескольких сотен метров осадочных пород и позволил предположить присутствие слоя газогидратов. Сигнал появляется в осадках на обширной территории севернее и южнее дельты р. Селенга. В 1998 г. газогидраты удалось найти на глубине 120 м в районе Южной котловины в ходе осуществления программы «Байкал-бурение» под руководством академика РАН М. Кузьмина. Находка подтвердила присутствие газогидратов в толще донных отложений оз. Байкал на глубине нескольких сотен метров (рис. 1. 3). Месторождение газогидратов в пресной воде является уникальным.

Рис. 1.3. Газогидраты в осадках озера Байкал

Хотя газогидраты были неоднократно обнаружены в областях выброса газов в океане, распределение и, в особенности, объем залежей, содержащихся в данных структурах, изучены еще недостаточно. Требуется проведение тщательных исследований участков выброса газов. Озеро Байкал очень хорошо подходит для выполнения этой работы, поскольку здесь можно проводить исследования летом с кораблей и зимой со льда, что позволяет выбрать наиболее подходящее место для экспериментов и подробно исследовать выбранный район.

Поддонные участки газогидратов в оз. Байкал – превосходная экспериментальная база для оценки количества и пространственного размещения газогидратов в структурах данного типа. Для проведения исследований необходимо получить образцы более глубоких осадочных слоев и применять комплексно несколько физических методов. Воды оз. Байкал считаются очень чистыми. Если внешнее загрязнение и существует, то оно контролируемо и имеет ограниченный характер. Сейчас стало ясно, что загрязнение озера метаном вызывается также естественными процессами. Необходимо оценить содержание метана в воде.

В США намерены в течение ближайшего десятилетия приступить к освоению нового, практически неисчерпаемого источника энергии – гидратов метана. Для этого в Мексиканский залив направляется исследовательский корабль, оснащенный буровым оборудованием, который должен произвести предварительную геологическую разведку. В ходе экспедиции предполагается собрать образцы из двух крупнейших залежей гидратов в регионе. В дальнейшем учёные будут проводить эксперименты, чтобы разработать технологию извлечения метана из кристаллов и транспортировки его на поверхность.

Многие страны, ищущие альтернативные источники ископаемого топлива, инвестируют в исследования газогидратов миллионы долларов. Кроме США, активные работы в этой области ведут Япония, Индия и Корея. Добывать газогидраты легче на суше, чем на дне океана. Еще в 2003 г. группа ученых и представителей нефтяных компаний из Канады, Японии, Индии, Германии и США доказала возможность их добычи из вечной мерзлоты на севере Канады. Аналогичные эксперименты проводятся на Аляске.

Свойства природного газа в определенных условиях образовывать твердые соединения активно используются в сфере новых технологий. Норвежские исследователи, например, разработали технологию преобразования природного газа в газогидрат, позволяющую транспортировать его без использования трубопроводов и хранить в наземных хранилищах при нормальном давлении (газ при этом преобразуют в замороженный гидрат и смешивают с охлажденной нефтью до консистенции жидкой глины). Выход на коммерческий уровень завода по переработке природного газа в газонефтяную смесь планируется уже в ближайшие годы. Предлагается также использовать газовые гидраты как химическое сырье для опреснения морской воды и разделения газовых смесей.

Несмотря на привлекательность использования газогидратов в качестве топлива, разработка новых месторождений может привести к ряду негативных последствий. Неизбежное выделение метана из ГГЗ в атмосферу усилит парниковый эффект. Проходка нефтяных и газовых скважин через гидратсодержащие слои под морским дном может вызвать оттаивание гидратов и деформации скважин, что повышает риск аварийных ситуаций на платформах. Строительство и эксплуатация глубоководных добывающих платформ в районах распространения гидратсодержащих слоев, где имеется уклон морского дна, чреваты образованием подводных оползней, которые могут уничтожить платформу.

В настоящее время во многих странах уделяется большое внимание изучению природных газовых гидратов – и как перспективных источников газа, и как фактора, осложняющего морскую добычу нефти и газа. При наличии в России значительных запасов «традиционного» газа поиск нетрадиционных энергоносителей и разработка методов их освоения могут показаться неактуальными. Однако начало разработки газогидратных месторождений может стать и началом нового этапа передела мирового газового рынка, в результате которого позиции России окажутся заметно ослабленными.

Таким образом, можно сделать следующие выводы:

· газовые гидраты являются единственным не разрабатываемым источником природного газа на Земле, который может составить реальную конкуренцию традиционным месторождениям. Значительные потенциальные ресурсы газа в гидратных залежах надолго обеспечат человечество высококачественным энергетическим сырьем;

· освоение газогидратных месторождений требует разработки новых, гораздо более эффективных по сравнению с существующими технологий разведки, добычи, транспортировки и хранения газа, которые смогут применяться и на традиционных газовых месторождениях, в том числе на тех, отработка которых сейчас нерентабельна;

· добыча газа из гидратных залежей способна очень быстро изменить ситуацию на газовом рынке, что может повлиять на экспортные возможности России.

Некоторые дополнительные сведения о газовых гидратах

В связи с тем, что газовые гидраты начали рассматриваться в геологической литературе сравнительно недавно, целесообразно дать краткую сводку о составе этого класса веществ и условиях их образования.

Газовые гидраты – это кристаллические, макроскопически льдоподобные вещества,

образующиеся при сравнительно низких (но не обязательно отрицательных по шкале Цельсия) температурах из воды и газа при достаточно высоких давлениях. Гидраты относятся к нестехиометрическим соединениям и описываются общей формулой М×nН 2 О, где М - молекула газа-гидратообразователя. Помимо индивидуальных гидратов известны двойные и смешанные (в состав которых входит несколько газов). Большинство компонентов природного газа (кроме Н 2 , He, Ne, n‑С 4 Н 10 и более тяжелых алканов) способно к образованию индивидуальных гидратов. Молекулы воды слагают в гидратах полиэдрический каркас (то есть решетку «хозяина»), где имеются полости, которые могут занимать молекулы газов. Равновесные параметры гидратов разного состава отличаются, но для образования любого гидрата при более высокой температуре требуется более высокая равновесная концентрация (давление) газа-гидратообразователя.

Сравнительно низкая температура при достаточно высоком гидростатическом давлении на морском дне при глубинах воды начиная с 300–400 м и более предопределяет возможность существования газовых гидратов в верхней части поддонного разреза. Это обстоятельство возбудило к субмаринным гидратам живой интерес геологов сразу же после регистрации в СССР в 1969 г. открытия В. Г. Васильевым, Ю. Ф. Макогоном, Ф. А. Требиным и А. А. Трофимуком «Свойства природных газов находиться в земной коре в твердом состоянии и образовывать газогидратные залежи». Интерес к субмаринным газовым гидратам определяется, прежде всего, тем, что они рассматриваются как резерв углеводородного сырья. Предполагается, что газогидратоносными отложениями могут экранироваться залежи «нормального» газа и нефти. Гидраты газа рассматриваются также как компонент геологической среды, чувствительный к ее техногенным изменениям. Локальные изменения представляют интерес в инженерной геологии, глобальные – с позиций экологии. В первом случае имеется в виду специфика физико-механических свойств гидратсодержащих грунтов и их очевидное изменение при техногенном разложении гидратов, во втором – возможности усиления на Земле парникового эффекта при выделении метана из гидратов в атмосферу в связи с антропогенным изменением климата.

Термобарическая зона, в которой гидраты газа могут существовать, занимает практически все глубоководные акватории Мирового океана и значительную часть приполярных шельфов и имеет толщину в сотни метров. Однако гидраты в этой зоне встречаются отнюдь не повсеместно. Известно более 40 субмаринных районов, где наблюдались сами гидраты газа или их геофизические и геохимические признаки. К косвенным признакам газовых гидратов относят высокое содержание газа в породе, аномальные хлорность и изотопный состав поровых вод. Известны сейсморазведочные признаки присутствия гидратов. Из них наибольшее значение имеет специфический отражающий горизонт BSR, отождествляемый подошвой зоны стабильности газовых гидратов. Все субмаринные районы, где наблюдались гидраты, и районы с их признаками (за исключением нескольких площадей на арктическом шельфе США и Канады) располагаются на континентальных и островных склонах, подножиях, а также в глубоководье внутренних и окраинных морей в пределах осадочно-породных бассейнов, имеющих быстро формирующийся осадочный чехол сравнительно большой мощности. Эту приуроченность можно объяснить с помощью фильтрационной или седиментационной моделей гидратообразования.



Соединения, образующиеся при определённых термобарических условиях из воды и . Имя клатраты, от латинского «clathratus», что значит «сажать в клетку», было дано Пауэллом в . Гидраты газа относятся к нестехиометрическим, то есть к соединениям переменного состава. Впервые гидраты газов (сернистого газа и хлора) наблюдали ещё в конце Дж. Пристли, Б. Пелетье и В. Карстен.

Впервые газовые гидраты были описаны Гемфри Дэви в 1810 году. К 1888 году Вилард получает гидраты , C 2 H 2 , и N 2 O.

В 40-е годы советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне . В 60-е годы они же обнаруживают первые меторождения газовых гидратов на севере СССР. С этого момента газовые гидраты начинают рассматриваться как потенциальные источник топлива. Постепенно выясняется их широкое распространение в океанах и нестабильность при повышении температуры. Поэтому сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.

Свойства гидратов

Газовые гидраты внещне напоминают спресованный снег. Они часто имеют характерный запах природного газа, и могут гореть. Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160-180 см³ чистого газа. Они легко распадаются на воду и газ при повышении температуры.

Строение гидратов

В структуре газогидратов молекулы образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Эти полости могут занимать газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H 2 O, где М - молекула газа-гидратообразователя, n - число молекул воды, приходящихся на одну включённую молекулу газа, причём n - переменное число, зависящее от типа гидратообразователя, давления и температуры. В настоящее время известно по крайней мере три кристаллические модификации газогидратов:

Газовые гидраты в природе

Большинство ( , и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям пород. Преобладающими природными газовыми гидратами являются и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ( , гликоли, 30%-ный раствор CaCl 2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.