Глаз: строение органа зрения. Строение и функции сетчатки глаза

Люди во все времена задумывались над сложным строением человеческого организма. Так мудрый грек Герофил еще в древние времена описывал сетчатку глаза: «Взятая рыбацкая сетка, заброшенная на дно глазного бокала, которая ловит солнечные лучи». Это поэтическое сравнение оказалось удивительно точным. Сегодня уверенно можно утверждать, что сетчатка глаза – именно «сетка», способная «ловить» даже отдельные кванты света.

Сетчатку можно определить как многоэлементный фотоприемник изображений, который по упрощенной структуре представляется как разветвление зрительного нерва с дополнительными функциями обработки изображений.

Сетчатка глаза занимает зону диаметром около 22 мм, и за счет этого почти полностью (около 72% внутренней поверхности глазного яблока) устилает фоторецепторами глазное дно от реснитчатого тела до слепого пятна – зоны выхода из глазного дна зрительного нерва. При офтальмоскопии это выглядит как светлый диск по причине большего (чем в других зонах сетчатки) коэффициента отражения света.

Слепое пятно и центральная зона сетчатки

В зоне выхода зрительного нерва сетчатка не имеет фоточувствительных рецепторов. Поэтому изображение объектов, которые попадают в это место, человек не видит (отсюда и название «слепое пятно»). Оно имеет размер примерно 1,8 – 2 мм в диаметре, расположено в горизонтальной плоскости на расстоянии 4 мм от заднего полюса глазного яблока по направлению к носу ниже полюса глазного яблока.

Центральная зона сетчатки, которую называют желтым пятном, макулой или макулярной зоной, выглядит как наиболее темная зона глазного дна. У разных людей ее цвет может варьироваться от темно-желтого до темно-коричневого. Центральная зона имеет несколько вытянутую овальную форму в горизонтальной плоскости. Размер желтого пятна точно не определен, но принято считать, что в горизонтальной плоскости он составляет от 1,5 до 3 мм.

Желтое пятно, как и слепое пятно, не расположено в зоне полюса глазного яблока. Его центр смещен в горизонтальной плоскости в противоположном от слепого пятна направлении: на расстоянии около 1 мм от оси симметрии оптической системы глаза.

Сетчатка глаза имеет разную толщину. В зоне слепого пятна она является наиболее толстой (0,4 – 0,5 мм). Наименьшую толщину она имеет в центральной зоне желтого пятна (0,07 – 0,1 мм), где образуется так называемая центральная ямка. На краях сетчатки (зубчатая линия) ее толщина равна примерно 0,14 мм.

Хотя сетчатка и выглядит как тонкая пленка, все же она имеет сложную микроструктуру. В направлении лучей, которые поступают к сетчатке через прозрачные среды глаза и мембрану, отделяющую стекловидное тело от сетчатки, первым слоем сетчатки являются прозрачные нервные волокна. Они являются «проводниками», по которым в мозг передаются фотоэлектрические сигналы, несущие в себе информацию о зрительной картине объектов наблюдения: изображения, которые фокусируются оптической системой глаза на глазном дне.

Свет, плотность распределения которого на поверхности сетчатки пропорциональна яркости поля объектов, проникает через все слои сетчатки и попадает на светочувствительный слой, составленный из колбочек и палочек. Этот слой выполняет активное поглощение света.

Колбочки имеют длину 0,035 мм и диаметр от 2 мкм в центральной зоне желтого пятна до 6 мкм в периферийной зоне сетчатки. Порог чувствительности колбочек составляет примерно 30 квантов света, а пороговая энергия – 1,2 10 -17 Дж. Колбочки являются фоторецепторами дня «цветного» зрения.

Наибольшей приемлемостью пользуется трехкомпонентная теория Г. Гельмгольца, согласно которой восприятие цвета глазом обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Каждая колбочка имеет в разной концентрации три типа пигмента – светочувствительного вещества:

— первый тип пигмента (сине-голубой) поглощает свет в диапазоне длин волн 435-450 нм;
— второй тип (зеленый) – в диапазоне 525-540 нм;
— третий тип (красный) – в диапазоне 565-570 нм.


Палочки являются рецепторами ночного, «черно-белого» зрения. Их длина составляет 0,06 мм, а диаметр около 2 мкм. Они имеют пороговую чувствительность в 12 квантов света при длине волны 419 нм или пороговую энергию 4,8 0 -18 Дж. Следовательно, они намного более чувствительными к световому потоку.

Однако, вследствие слабой спектральной чувствительности палочек, объекты наблюдения ночью воспринимаются человеком как серые или черно-белые.

Плотность расположения колбочек и палочек по сетчатке не является одинаковой. Наибольшая плотность наблюдается в зоне желтого пятна. При приближении к периферии сетчатки плотность уменьшается.

В центре фовеа (фовеолы) находятся только колбочки. Их диаметр в этом месте является наименьшим, они плотно гексагонально заключены. В зоне фовеа плотность колбочек составляет 147000-238000 на 1 мм. Эта зона сетчатки имеет наибольшее пространственное разрешение, в связи с чем предназначена для наблюдения наиболее важных фрагментов пространства, на которых человек фиксирует свой взгляд.

Дальше от центра плотность уменьшается до 95 000 на 1 мм, а в парафовеа – до 10 000 на 1 мм. Плотность палочек самая высокая в парафовеоли – 150000-160000 на 1 мм. Дальше от центра их плотность также уменьшается, и на периферии сетчатки составляет всего 60000 на 1 мм. Средняя плотность палочек на сетчатке составляет 80000-100000 на 1 мм.

Функции сетчатки

Существует несоответствие между количеством отдельных фоторецепторов (7000000 колбочек и 120000000 палочек) и 1,2 миллиона волокон зрительного нерва. Оно проявляется в том, что количество «фотоприемников» более чем в 10 раз превышает количество «проводников», которые соединяют сетчатку с соответствующими центрами мозга.

Это делает понятной функцию слоев сетчатки: она заключается в осуществлении коммутации между отдельными фоторецепторами и участками зрительного центра мозга. С одной стороны, они не перегружают мозг «мелкой», второстепенной информацией, а с другой – не допускают потери важной составляющей зрительной информации о среде, которую наблюдает глаз. Поэтому каждая колбочка с фовеальной зоны имеет свой персональный канал прохождения нервных импульсов к мозгу.

Однако по мере удаления от фовеолы такие каналы образуются уже для групп фоторецепторов. Этому служат горизонтальные, биполярные амакринные и , а также внешние и внутренние её слои. Если каждая ганглиозная клетка для передачи сигналов в мозг имеет только свое персональное волокно (аксон), то это означает, что она благодаря коммутационному действию биполярных и горизонтальных клеток должна иметь синапсический контакт или с одним (в зоне фовеолы), или с несколькими (в периферийной зоне) фоторецепторами.

Ясно, что для этого нужно осуществлять соответствующую горизонтальную коммутацию фоторецепторов и биполярных клеток на более низком уровне, а также биполярных и ганглиозных клеток на высшем уровне. Такая коммутация обеспечивается через отростки горизонтальных и амакриновых клеток.

Синапсические контакты – это электрохимические контакты (синапсы) между клетками, которые осуществляются благодаря электрохимическим процессам с участием специфических веществ (нейромедиаторов). Ими обеспечивается «передача вещества» по «нервам-проводникам». Поэтому связи между различными дендритами сетчатки зависят не только от нервных импульсов, но и от процессов во всем организме. Эти процессы могут поставлять нейромедиаторы в зоны синапсов в сетчатке и в мозг как с участием нервных импульсов, так и с током крови, а также других жидкостей.

Дендриты – это отростки нервных клеток, которые воспринимают сигналы от других нейронов, рецепторных клеток, и проводят нервные импульсы через синапсические контакты к телу нейронов. Совокупность дендритов образует дендритную ветку. Совокупность дендритных ветвей называют дендритным деревом.

Амакриновые клетки осуществляют «боковое торможение» между соседними ганглиозными клетками. Этой обратной связью обеспечивается коммутация биполярных и ганглиозных клеток. Так не только решается задача подключения к мозгу ограниченного количества нервных волокон большого количества фоторецепторов, но и осуществляется предварительная обработка информации, поступающая от сетчатки к мозгу, то есть пространственная и временная фильтрация зрительных сигналов.

Таковы функции сетчатки глаза. Как видно, она очень хрупка и важна. Берегите ее!

Строение человеческого глаза напоминает фотоаппарат. В роли объектива выступают роговица, хрусталик и зрачок, которые преломляют лучи света и фокусируют их на сетчатке глаза. Хрусталик может менять свою кривизну и работает как автофокус у фотоаппарата - моментально настраивает хорошее зрение на близь или даль. Сетчатка, словно фотопленка, запечатляет изображение и отправляет его в виде сигналов в головной мозг, где происходит его анализ.

1 -зрачок , 2 -роговица , 3 -радужка , 4 -хрусталик , 5 -цилиарное тело , 6 -сетчатка, 7 -сосудистая оболочка , 8 -зрительный нерв , 9 -сосуды глаза , 10 -мышцы глаза , 11 -склера , 12 -стекловидное тело .

Сложное строение глазного яблока делает его очень чувствительным к различным повреждениям, нарушениям обмена веществ и заболеваниям.

Офтальмологи портала "Все о зрении" простым языком описали строение глаза человека дарят вам уникальную возможность наглядно ознакомиться с его анатомией.


Человеческий глаз – это уникальный и сложный парный орган чувств, благодаря которому мы получаем до 90% информации об окружающем нас мире. Глаз каждого человека обладает индивидуальными, только ему присущими характеристиками. Но общие черты строения важны для понимания того, какой же глаз изнутри и как он работает. В ходе эволюции глаз достиг сложного строения и в нём тесно взаимосвязаны структуры разного тканевого происхождения. Кровеносные сосуды и нервы, пигментные клетки и элементы соединительной ткани – все они обеспечивают основную функцию глаза – зрение.

Строение основных структур глаза

Глаз имеет форму сферы или шара, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично оно укрыто от возможного повреждения. Спереди глазное яблоко защищают верхнее и нижнее веки. Свободные движения глазного яблока обеспечиваются глазодвигательными наружными мышцами, точная и слаженная работа которых позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно.

Постоянное увлажнение всей поверхности глазного яблока обеспечивается слезными железами, которые обеспечивают адекватную продукцию слезы, образующей тонкую защитную слёзную плёнку, а отток слезы происходит через специальные слезоотводящие пути.

Самая наружная оболочка глаза – конъюнктива. Она тонкая и прозрачная и выстилает также и внутреннюю поверхность век, обеспечивая легкое скольжение при движении глазного яблока и моргании век.
Наружная «белая» оболочка глаза – склера, является самой толстой из трёх глазных оболочек, защищает внутренние структуры и поддерживает тонус глазного яблока.

Склеральная оболочка в центре передней поверхности глазного яблока приобретает прозрачность и имеет вид выпуклого часового стекла. Эта прозрачная часть склеры называется роговицей, которая очень чувствительная благодаря наличию в ней множества нервных окончаний. Прозрачность роговицы позволяет свету проникать внутрь глаза, а её сферичность обеспечивает преломление световых лучей. Переходная зона между склерой и роговицей называется лимбом. В этой зоне находятся стволовые клетки, обеспечивающие постоянную регенерацию клеток наружных слоев роговицы.

Следующая оболочка - сосудистая. Она выстилает склеру изнутри. По её названию понятно, что она обеспечивает кровоснабжение и питание внутриглазных структур, а также поддерживает тонус глазного яблока. Сосудистая оболочка состоит из собственно хориоидеи, находящейся в тесном контакте со склерой и сетчаткой, и таких структур как цилиарное тело и радужка, которые располагаются в переднем отделе глазного яблока. Они содержат в себе много кровеносных сосудов и нервов.

Цилиарное тело – это часть сосудистой оболочки и сложный нервно-эндокринно-мышечный орган, играющий важную роль в продукции внутриглазной жидкости и в процессе аккомодации.


Цвет радужки определяет цвет глаза человека. В зависимости от количества пигмента в её наружном слое она имеет цвет от бледно-голубого или зелёноватого до тёмно-коричневого. В центре радужки находится отверстие – зрачок, через который свет попадает внутрь глаза. Важно отметить, что кровоснабжение и иннервация хориоидеи и радужки с цилиарным телом раличные, что отражается на клинике заболеваний такой в общем-то единой структуры, как сосудистая оболочка глаза.

Пространство между роговицей и радужкой является передней камерой глаза, а угол, образованный периферией роговицы и радужки, называется углом передней камеры. Через этот угол происходит отток внутриглазной жидкости сквозь специальную сложную дренажную систему в глазные вены. За радужкой находится хрусталик, который располагается перед стекловидным телом. Он имеет форму двояковыпуклой линзы и хорошо фиксирован множеством тонких связок к отросткам цилиарного тела.

Пространство между задней поверхностью радужки, цилиарным телом и передней поверхностью хрусталика и стекловидного тела называется задней камерой глаза. Передняя и задняя камеры заполнены бесцветной внутриглазной жидкостью или водянистой влагой, которая постоянно циркулирует в глазу и омывает роговицу, хрусталик, при этом питая их, так как собственных сосудов у этих структур глаза нет.

Самой внутренней, самой тонкой и самой важной для акта зрения оболочкой является сетчатка. Она представляет собой высокодифференцированную многослойную нервную ткань, которая выстилает сосудистую оболочку в её заднем отделе. От сетчатки берут начало волокна зрительного нерва. Он несёт всю полученную глазом информацию в виде нервных импульсов через сложный зрительный путь в наш мозг, где она преобразуется, анализируется и воспринимается уже как объективная реальность. Именно на сетчатку в конечном счёте попадает или не попадает изображение и в зависимости от этого, мы видим предметы чётко или не очень. Самой чувствительной и тонкой частью сетчатки является центральная область – макула. Именно макула обеспечивает наше центральное зрение.

Полость глазного яблока заполняет прозрачное, несколько желеобразное вещество – стекловидное тело. Оно поддерживает плотность глазного яблока и прилегает в внутренней оболочке - сетчатке, фиксируя её.

Оптическая система глаза

По своей сущности и предназначению, человеческий глаз – это сложная оптическая система. В этой системе можно выделить несколько наиболее важных структур. Это роговица, хрусталик и сетчатка. В основном, именно от состояния этих пропускающих, преломляющих и воспринимающих свет структур, степени их прозрачности зависит качество нашего зрения.
  • Роговица сильнее всех других структур преломляет световые лучи, далее проходяие через зрачок, который выполняет функцию диафрагмы. Образно говоря, как в хорошем фотоаппарате диафрагма регулирует поступление световых лучей и в зависимости от фокусного расстояния позволяет получать качественное изображение, так и зрачок функционирует в нашем глазу.
  • Хрусталик также преломляет и пропускает световые лучи далее на световоспринимающую структуру – сетчатку, своеобразную фотоплёнку.
  • Жидкость глазных камер и стекловидное тело также обладают преломляющими свет свойствами, но не такими значительными. Тем не менее, состояние стекловидного тела, степень прозрачности водянистой влаги глазных камер, наличие в них крови или других плавающих помутнений тоже может влиять на качество нашего зрения.
  • В норме световые лучи, пройдя через все прозрачные оптические среды, преломляются так, что попадая на сетчатку формируют уменьшенное, перевернутое, но реальное изображение.
Окончательный анализ и восприятие полученной глазом информации, происходит уже в нашем головном мозгу, в коре его затылочных долей.

Таким образом, глаз устроен очень сложно и удивительно. Нарушение в состоянии или кровоснабжении, любого структурного элемента глаза может отрицательно сказаться на качестве зрения.

Функции сетчатки глаза обусловлены особенностями строения этого исключительно важного для человека элемента зрительной системы. Фактически сетчатка - покрывающая изнутри наши органы зрения оболочка, чья функциональность обусловлена наличием способных воспринимать световые потоки фоторецепторов очень высокого уровня чувствительности.

Структура, функции сетчатки обусловлены тем, что орган представляет собой высокоплотное скопление клеток нервной ткани, воспринимающих зрительный образ, передающих его на обработку мозгу. Всего известно десять слоев, сформированных нервной тканью, кровеносными сосудами, другими клетками. Сетчатка выполняет функции, возложенные на нее природой, благодаря непрерывным обменным процессам, спровоцированным сосудами.

Структурные особенности

При внимательном изучении можно заметить, что структура, функции сетчатки четко связаны. Дело в том, что в органе есть так зазываемые палочки, колбочки - этими терминами принято обозначать высокочувствительные рецепторы, анализирующие световые фотоны, производящие электрические импульсы. Следующий слой - нервная ткань. Через свойственные высокочувствительным клеткам функции сетчатка обеспечивает центральное зрение, по периферии.

Центральным принято именовать целенаправленное исследование некоторого объекта в поле видимости. При этом можно исследовать объекты, расположенные на нескольких уровнях. Именно центральное зрение делает реальным чтение сведений. А вот функции сетчатки, реализующие периферическое, делают возможной ориентацию в пространстве. Рецепторы в форме колбочек существуют 3 типажей, настроенных на специфические длины волн. Такая сложная система реализует еще одну функцию сетчатки - восприятие цвета.

Строение: любопытные моменты

Один из самых сложных элементов зрительной системы в пределах сетчатки - оптическая часть, сформированная элементами, обладающими очень высокой чувствительностью к свету. Зона занимает внушительное в масштабах органа пространство - до зубчатой нити, через нее реализуются функции сетчатки глаза человека.

Одновременно с этим строение предполагает два клеточных слоя радужковой, ресничной ткани. Ее принято классифицировать как нефункциональную.

Специфические особенности

Занимаясь исследованием строения и функций сетчатки, ученые выявили, что ткань принадлежит головному мозгу, хотя и сместилась под влиянием биологических процессов и эволюции на периферию. 10 слоев, формирующих орган:

  • граничный внутренний;
  • граничный внешний;
  • волокнистые клетки нервной ткани;
  • ганглиозная ткань;
  • сплетениевидный (изнутри);
  • сплетениевидный (снаружи);
  • внутреннее ядро;
  • внешнее ядро;
  • пигмент;
  • фоточувствительные рецепторы.

Света мне, света!

Как удалось выявить в ходе исследований, строение сетчатки глаза и функции органа имеют тесную взаимосвязь. В качестве основного предназначения органа - восприятие светового излучения, обеспечение проводимости информации для обработки ее головным мозгом. Орган сформирован огромным количеством фоторецепторов. Ученые насчитали порядка семи миллионов колбочек, а вот второй тип, палочки, еще более многочисленный. По предварительным оценкам, одна сетчатка человеческого глаза включает в себя до 120 миллионов таких клеток.

Разбирая, какие функции выполняет сетчатка, необходимо отметить, что колбочки существуют трех видов, и каждому характерна специфическая окраска - зеленая, голубоватая, красная. Именно такое качество дает возможность ощущать свет, без чего полноценно видеть не представляется реальным. А вот палочки богаты родопсином, поглощающим красное излучение. По ночам человек может видеть преимущественно благодаря наличию палочек. Дневное видение обусловлено особенностями строения сетчатки: функции воспринимающих клеток берут на себя колбочки. Сумеречное зрение обеспечивается одновременной активизацией всех клеток органа.

Как это сделано?

Одна из любопытных особенностей органа - неравномерность распределения фоторецепторов по поверхности. Центральная зона, к примеру, более всего богата колбочками, а вот на периферии плотность существенно снижается. Палочки по центру присутствуют в очень малой концентрации, наибольшая их часть характерна для кольца, окружающего центральную ямку. А вот в направлении периферии плотность палочек снижается.

Обычный человек привык смотреть на мир, даже не задумываясь над механизмом, базовыми особенностями этого процесса. Ученые, занимающиеся специфическими исследованиями, заверяют, что природный зрительный комплекс исключительно сложен.

Световой фотон сперва улавливается ответственным за это рецептом, затем формируется электрический импульс, который последовательно перемещается к биполярному слою, оттуда - к ганглиозным нейронным клеткам, оснащенным удлиненными отростками-аксонами. Аксон, в свою очередь, формирует зрительный нерв, то есть именно он может передать информацию, поступившую от фоторецептора, в нервную систему. Импульс, посланный сетчаткой, после сложных промежуточных этапов наконец достигает центральной нервной системы, запускается процесс обработки в головном мозге, позволяющий осознать увиденное изображение и отреагировать на полученные данные.

Сколько можно увидеть?

О том, что у телевизора, монитора есть разрешение, сегодня знают и дети, и взрослые. А вот тот факт, что величиной разрешения можно охарактеризовать и человеческое зрение, почему-то уже не столь очевиден. А ведь это именно так: в качестве описательной характеристики можно прибегнуть именно к разрешению, вычисляемому как число фоточувствительных рецепторов, соединённых с биполярной клеточной тканью. Этот показатель существенно варьируется в разных зонах сетчатки.

Исследования фовеальной области показали, что одна колбочка имеет связь с двумя клетками ганглиозной ткани. На периферии одна клетка этой же ткани связана с многочисленными палочками, колбочками. Фоторецепторы, неравномерно распределяясь по сетчатке, дают макуле повышенные показатели разрешения. Палочки, расположенные на периферии, делают реальным качественное полноценное зрение.

Особенности нервной системы сетчатки

Сетчатка сформирована двумя типами клеток нервной ткани. Плексиформные расположены снаружи, амакриновые - на внутренней стороне. Благодаря такой особенности строения нейроны имеют тесную связь друг с другом, что координирует сетчатку в целом.

Зрительный нерв имеет специфический диск, на 4 миллиметра удаленный от центра фовеальной области. Эта область сетчатки лишена фоточувствительных рецепторов. Если фотоны попадают на диск, такая информация не может поступить в головной мозг. Особенность приводит к формированию физиологического пятна, сопоставимого с диском.

Сосуды и любопытная специфика

Сетчатка неоднородна по толщине: некоторые части более толстые, нежели другие. Самые тонкие элементы расположены в центре, ответственном за максимальное разрешение зрительной системы. А вот наибольшей толщины сетчатка достигает вблизи зрительного нерва, характерного ему диска.

Нижняя часть сетчатки имеет тесную связь с сосудистой системой, так как именно тут крепится оболочка. В некоторых местах сращивание довольно плотное. Это характерно для края макулы и зубчатой линии, а также для пространства поблизости от зрительного нерва. А вот остальная площадь органа рыхло закреплена на сосудистой оболочке. Для таких участков гораздо выше риск развития отслоения.

Как это работает?

Чтобы сетчатка могла нормально функционировать, ткани нуждаются в питании. Полезные компоненты поступают двумя путями. Внутренние шесть слоев имеют доступ к центральной артерии, то есть кровеносная система снабжает клетки кислородом и необходимыми микроэлементами. Четыре внешних слоя питаются от сосудистой оболочки. В медицине это называется хориокапиллярным слоем.

Патологии: особенности диагностирования

Если предполагается заболевание сетчатки, необходимо по возможности оперативно провести диагностические мероприятия для выявления текущего процесса, его причин, а также определения оптимальной стратегии устранения проблемы. Диагностирование предполагает выявление контрастной чувствительности, на основании чего делают вывод относительно состояния макулы. Следующий этап - определение остроты зрения, способности воспринимать цвета и оттенки, а также пороги этих возможностей. Периметрическим методом можно определить границу поля зрения.

Во многих случаях необходимо прибегнуть к методам офтальмоскопии, электрофизиологии (дает информацию о нервной ткани зрительной системы), когерентной томографии (выявляет качественные изменения тканей), флуоресцентной ангиографии (определяет патологии сосудов). Обязательно фотографируют глазное дно, чтобы получить общее представление о динамике патологии.

Симптоматика

Заподозрить врождённые патологии органа можно, если при исследовании зрительной системы обнаружены миелиновые волокна, колобома. Один из показательных симптомов, требующих особенно тщательной проверки, - некорректно развитое глазное дно. Приобретённые заболевания сопровождаются отслоением ткани, ретинитом, ретиношизисом. С возрастом у определенного процента людей наблюдаются нарушения кровеносной системы, что не позволяет тканям зрительных органов получать необходимые кислород и компоненты. Системные патологии могут спровоцировать ретинопатию, а травмы становятся причиной развития берлиновского помутнения. Нередко развиваются очаги пигментации, факоматозы.

Преимущественно повреждения выражаются понижением качества зрения. При влиянии на центр последствия наиболее тяжёлые, а результатом может стать даже абсолютная слепота по центру, сопряженная с сохранением периферического видения, то есть у человека остается возможность самостоятельно ориентироваться в пространстве без применения специальных приборов. В случае, когда патология сетчатки начинает развиваться с периферии, долговременно процесс не проявляет себя, а заподозрить его удается лишь в рамках планового обследования у офтальмолога. При большой площади повреждений наблюдается дефект видения, определенные участки для человека превращаются в слепые, а также понижается способность ориентации, особенно при невысоком уровне освещенности. Известны случаи, когда патология сопровождалась нарушением восприятия цветов.

Строение глаза человека практически идентично устройству его у многих видов животных. Даже акулы и кальмары имеют строение глаза как у человека. Это говорит о том, что этот появился очень давно и практически не изменялся со временем. Все глаза по своему устройству можно разделить на три типа:

  1. глазное пятно у одноклеточных и простейших многоклеточных;
  2. простые глаза членистоногих напоминающие бокал;

Устройство глаза сложно, он состоит из более десятка элементов. Строение глаза человека может называться самым сложным и высокоточным в его теле. Малейшее нарушение или несоответствие в анатомии приводит к заметному ухудшению зрения или полной слепоте. Потому существуют отдельные специалисты, сосредотачивающие свои усилия на этом органе. Для них крайне важно знать в мельчайших деталях, как устроен глаз человека.

Общие данные о строении

Весь состав органов зрения можно разделить на несколько частей. В зрительную систему входит не только сам глаз, но и идущие от него зрительные нервы, обрабатывающий поступающую информацию участок головного мозга, а также органы, предохраняющие глаз от повреждения.

К предохраняющим органам зрения можно отнести веки и слезные железы. Немаловажным является мышечная система глаза.

Сам глаз состоит из светопреломляющей, аккомодационной и рецепторной системы.

Процесс получения изображения

Первоначально свет проходит через роговицу – прозрачный участок внешней оболочки, осуществляющий первичную фокусировку света. Часть лучей отсеивается радужкой, другая часть проходит через отверстие в ней – зрачок. Адаптация к интенсивности светового потока осуществляется зрачком при помощи расширения или сужения.

Окончательное преломление света происходит с помощью линзы. После чего пройдя через стекловидное тело, лучи света попадают на сетчатку глаза – рецепторный экран, преобразующий информацию светового потока в информацию нервного импульса. Само же изображение формируется в зрительном отделе мозга человека.

Аппараты изменения и обработки света

Светопреломляющая структура

Представляет собой систему линз. Первая линза – , благодаря этой части глаза поле зрения человека составляет 190 градусов. Нарушения этой линзы приводят к туннельному зрению.

Окончательное преломление света происходит в хрусталике глаза, он фокусирует лучи света на небольшом участке сетчатки. Хрусталик отвечает за , изменения его формы ведут к близорукости или дальнозоркости.

Аккомодационная структура

Эта система регулирует интенсивность поступающего света и его фокус. Она состоит из радужки, зрачка, кольцевых, радиальных и цилиарных мышц, также к этой системе можно отнести хрусталик. Фокусировка для видения удаленных или приближенных предметов происходит при помощи изменения его кривизны. Кривизну хрусталика изменяют цилиарные мышцы.

Регулирование светового потока идет из-за изменения диаметра зрачка, расширения или сужения радужки. За сжатие зрачка отвечают кольцевые мышцы радужки, за его расширение – радиальные мышцы радужки.

Рецепторная структура

Представлена сетчаткой, состоящей из фоторецепторных клеток и подходящим к ним окончаний нейронов. Анатомия сетчатки сложная и неоднородная, на ней есть слепое пятно и участок с повышенной чувствительностью, сама она состоит из 10 слоев. За главную функцию обработки информации света отвечают фоторецепторные клетки, разделяемые по форме на палочки и колбочки.

Устройство человеческого глаза

Для визуального наблюдения доступна лишь малая часть глазного яблока, а именно – одна шестая часть. Остальное глазное яблоко расположено в глубине глазницы. Масса составляет примерно 7 грамм. По форме он имеет неправильную шаровидную форму, слегка вытянутую по сагиттальному (вглубь) направлению.

Изменение сагиттальной длины приводит к близорукости и дальнозоркости, также как изменение формы хрусталика.

Интересный факт: глаз – это единственная часть человеческого тела одинаковая по размеру и массе у всего нашего рода, он различается лишь на доли миллиметров и миллиграмм.

Веки

Их цель – защита и увлажнение глаза. Сверху века располагается тонкий слой кожи и ресницы, последние предназначены для отведения стекающих капель пота и для защиты глаза от грязи. Веко снабжено обильной сетью кровеносных сосудов, форму оно держит при помощи хрящевого слоя. Снизу располагается конъюнктива – слизистый слой, содержащий множество желез. Железы увлажняют глазное яблоко для снижения трения при его движении. Сама влага равномерно распределяется по глазу в результате моргания.

Интересный факт: человек моргает 17 раз в минуту, при чтении книги частота сокращается почти вдвое, а при чтении текста в компьютере исчезает практически полностью. Именно поэтому глаза так сильно устают от компьютера.

Для моргания основная часть века представляет собой мышечную толщу. Равномерное увлажнение происходит при соединении верхнего и нижнего века, полуприкрытое верхнее веко не способствует равномерному увлажнению. Также моргание защищает орган зрения от летающих мелких частиц пыли и насекомых. Моргание также помогает выведению инородных предметов, ещё за это отвечают слезные железы.

Интересный факт: мышцы века самые быстрые, моргание занимает 100-150 миллисекунд, человек может моргать со скоростью 5 раз в секунду.

От их работы зависит направление взгляда человека, при несогласованной работе возникает косоглазие. делятся на десяток групп, главные из них – те, которые отвечают за направление взгляда человека, поднятие и опускание века. Сухожилия мышц врастают в ткань склеротической оболочки.

Интересный факт: мышцы глаза самые активные, даже сердечная мышца им уступает.

Интересный факт: майя считали косоглазие красивым, они специальными упражнениями развивали у своих детей косоглазие.

Склера и роговица

Склера защищает строение человеческого глаза, она представлена фиброзной тканью и покрывает 4/5 его части. Она довольно прочная и плотная. Благодаря этим качествам строение глаза не меняет свою форму, а внутренние оболочки надежно защищены. Склера непрозрачна, имеет белый цвет («белки» глаз), содержит кровеносные сосуды.

В отличие от нее роговица прозрачна, не имеет кровеносных сосудов, кислород поступает через верхний слой из окружающего воздуха. Роговица – очень чувствительная часть глаза, после повреждения она не восстанавливается, в результате чего наступает слепота.

Радужка и зрачок

Радужка — это подвижная диафрагма. Она участвует в регуляции светового потока, проходящего через зрачок – отверстие в ней. Для отсеивания света радужка светонепроницаема, имеет специальные мышцы для расширения и сужения просвета зрачка. Круговые мышцы окружают радужку кольцом, при их сокращении зрачок сужается. Радиальные мышцы радужки отходят от зрачка наподобие лучиков, при их сокращении зрачок расширяется.

Радужка имеет самые разные цвета. Самый частый из них – коричневый, реже встречаются зеленые, серые и голубые глаза. Но есть и более экзотические цвета радужки: красный, желтый, фиолетовый и даже белый. Коричневый цвет приобретается за счет меланина, при большом его содержании радужка становится черной. При малом содержании радужка приобретает серый, голубой или синий оттенок. Красный цвет встречается у альбиносов, а желтый цвет возможен при пигменте липофусцине. Зеленый цвет является сочетанием синего и желтого оттенка.

Интересный факт: схема отпечатков пальцев имеет 40 уникальных показателей, а схема радужки – 256. Именно поэтому применяется сканирование сетчатки глаза.

Интересный факт: голубой цвет глаз является патологией, он появился в результате мутации примерно 10 000 лет назад. У вех голубоглазых людей был общий предок.

Хрусталик

Его анатомия довольна проста. Это двояковыпуклая линза, основная задача которой – фокусировка картинки на сетчатке глаза. Хрусталик заключен в оболочку однослойных кубических клеток. Он фиксируется в глазу при помощи крепких мышц, эти мышц могут влиять на кривизну хрусталика, тем самым изменяя фокусировку лучей.

Сетчатка

Многослойная рецепторная структура располагается внутри глаза, на задней его стенке. Её анатомия переназначена для лучшей обработки поступающего света. Основу рецепторного аппарата сетчатки представляют клетки: палочки и колбочки. При дефиците света, четкость восприятия возможна благодаря палочкам. За цветовую передачу отвечают колбочки. Преобразование светового потока в электрический сигнал идет при помощи фотохимических процессов.

Интересный факт: дети не различают цвета после родов, слой колбочек окончательно формируется лишь через две недели.

Колбочки реагируют на световые волны по-разному. Они делятся на три группы, каждая из которых воспринимает только свой определенный цвет: синий, зеленый или красный. На сетчатке есть место, куда входит зрительный нерв, здесь отсутствуют фоторецепторные клетки. Эта зона называется «Слепым пятном». Также есть зона с наибольшим содержанием светочувствительных клеток «Желтое пятно», оно обуславливает ясную картинку в центре поля зрения. Сетчатка интересна тем, что она неплотно прилегает к следующему сосудистому слою. Из-за этого иногда появляется такая патология, как отслоение сетчатки глаза.

Способен видеть при освещении в несколько фотонов и при прямом солнечном свете. Он способен фокусироваться всего за треть секунды. Благодаря этому и за счет особенностей строения (о которых речь пойдет дальше) глаз считается одним из самых сложных органов организма. Что это? Результат эволюции или невероятное стечение обстоятельств? Попробуем разобраться в этом.

Эволюция органа зрения глазами Дарвина

Некоторые ученые считали идею эволюции органа зрения крайне абсурдной. Но так ли это на самом деле? Чарльз Дарвин предложил свое объяснение механизма эволюции. Он считал, что если орган зрения непрерывно изменяются, то эти изменения наследуются. А значит, сложнейший орган зрения мог быть создан в таком виде, каким мы его сейчас наблюдаем, путем естественного отбора. Он проанализировал строение органа зрения многих существ, а также показал изменения в структуре глаза — начиная с самых простых и заканчивая сложнейшими организмами.

Эволюция человеческого глаза началась более 500 000 000 лет назад. Именно тогда началось развитие светочувствительного пятна, состоящего из нескольких клеток у простейшего организма. Пятно помогало отличать свет от тьмы. И хотя оно не могло определять расстояние или изображение, но именно с него началось развитие глаза. В пользу эволюции говорит тот факт, что для того, чтобы пятно развивалось и со временем превратилось бы в пятно у планарии (плоского червя) или обычный глаз рыбы, потребовалось бы развитие множества компонентов и систем организма.

Для каждого из компонентов необходимо наличие протеинов (белков), которые выполняли бы особые функции. Эти функции должны закрепляться в ДНК существа. Существование подобных веществ означает, что во взаимодействие и процесс эволюции вовлекается система других протеинов или генов со своей функцией. Без них зрение невозможно.

Эволюция – на пути к совершенству

Человеческий глаз не претендует на совершенство хотя бы потому, что он не идеален. А значит, глаз – это результат эволюции. С другой стороны, то, что мы считает дефектом дизайна, на самом деле может оказаться весьма полезным. Какие же дефекты дизайна человеческого глаза мы знаем?

Биолог Ричард Доукинс в своей книге «Слепой часовщик» справедливо утверждал, что с точки зрения фотоинженерии, фотографические элементы должны быть направлены к свету, а провода, связывающие элементы с органом воспроизведения и анализа – к мозгу (в нашем случае). Если элементы подключены «задом наперед», а провода располагаются на стороне, близкой к свету, свет преодолевает их массу, ослабляется и искажается. С точки зрения Доукинса , это эстетически не правильно. Однако это предположение не объясняет того, почему подобная система успешно используется позвоночными в течение долгих лет. Но тот же Доукинс добавляет, что различие несущественно, ведь большинство фотонов направляются прямо и в любом случае будут пойманы глазом.

О сетчатке глаз различных животных

Самые развитые неперевернутые сетчатки глаза принадлежат головоногим – кальмару и осьминогу. Сетчатка осьминога содержит 20 000 000 клеток-фоторецепторов. Но и это не предел. У человека их 126 миллионов, а у птиц – в 10 раз больше.

Человеческого глаза содержит «центральную ямку». Это «центр центра» — место в «пятне» — центре человеческой сетчатки. Именно здесь больше всего фоторецепторов и колбочек. Все сосуды располагаются к ней таким образом, что создается область высокой визуальной резкости с постепенным уменьшением визуальной резкости к периферии сетчатки. А само пятно в 100 раз чувствительнее сетчатки. Это позволяет глазу человека сфокусироваться на определенном участке, не отвлекаясь на периферийное зрение.

Иначе дело обстоит с глазами птиц. Их сетчатка не имеет центральной ямки или пятна. Сетчатка осьминога также не имеет ямки, но у осьминога есть линейный централис. Этот орган формирует диапазон резкости вдоль сетчатки. Глаз осьминога имеет еще одну особенность. Используя статоцист (орган равновесия), глаз всегда поддерживает одну позицию относительно гравитационного поля Земли.

Энергозатраты на поддержание такого сложного органа весьма велики. Так, потребление кислорода сетчаткой глаза (из расчета на один грамм ткани) на 50 % больше, чем в печени, и на 600 % больше, чем в сердечной мышце (миокарда). Близость фоторецепторов к капиллярам и отсутствие на их пути нервов обеспечивает быструю поставку питательных веществ и выводит отходы.

Примеры

Впервые зрение появилось около 540 000 000 лет назад. Эволюционный процесс был сложным. Сначала у одноклеточного эвглены зелёной появилось светочувствительное пятно – «глазок». Способность различать свет для эвглены было жизненно необходимым. По мере усложнения жизни и появления новых видов эволюционировал и глаз.

Так, происходила группировка светочувствительных клеток в виде «пятна». С помощью него организм мог оценить передвижения хищника. С появлением глазных пятен у медуз (около 500 млн. лет назад), эти организмы могли ориентироваться в пространстве.

У ресничных червей появляется уже два пятна, и каждое из них содержит тысячи фоточувствительных клеток. Эти пятна лишь наполовину погружены в чашку пигмента – прообраза современного глаза. Постепенно образуется желобок, так называемый «бокал глаза». Например, это можно увидеть у речных улиток. Видимость таким глазом как через матовое стекло.

Происходит повышение остроты зрения по мере сужения наружного отверстия глаза. У моллюска наутилус глаз размером 1 сантиметр содержит миллионы клеток, но все равно улавливает мало света.

На определенном этапе эволюции появилось два органа зрения. Один позволял видеть мир в светлых красках. Другой позволял различать очертания предметов. Именно от второго и происходит человеческий орган зрения. Чуть позднее происходит формирование прозрачной пленки, которая защищает зрачок от загрязнения и меняет его способность преломления света. Так появляется первый хрусталик. Чем он больше – тем острее взор.

Глаз оказывается настолько совершенным органом, что природе понадобилось изобрести его дважды, отдельно для беспозвоночных и для позвоночных. Процесс развития тоже был различным. В случае с моллюсками глаз произошел из эпителия, а в случае с человеком – из эпителия (роговица и хрусталик) и нервной ткани (стекловидное тело и сетчатка). Есть также третий, фасеточный глаз. Он более сложный и состоит из множества омматидиев (отдельных глазков). Этим глазом обладают трилобиты, насекомые, ракообразные и некоторые беспозвоночные.