Магнетизм - от фалеса до максвелла. Магнитные явления в природе

Что представляет собой природа магнетизма? Известно, что сам магнетизм является одним из основных свойств материи. Благодаря ему, определённые металлы намагничиваются и начинают притягивать к себе другие металлы. Но вот почему это происходит - тут ясного и чёткого ответа нет, как нет ответа на вопрос, что такое электрический ток. Теоретически, конечно, все эти понятия объяснены, созданы математические модели, и человек может управлять как магнитными, так и электрическими силами. Но истинная суть вопроса остаётся за гранью сознания. Люди не знают, почему это происходит, как не знают, почему бьётся человеческое сердце.

У каждого магнита есть 2 полюса - северный и южный . Этот факт наводит на мысль, что в полюсах скапливается магнитная энергия. Причём эта энергия имеет разные знаки - плюс и минус. По логике вещей, если разрезать магнит пополам, то в одной части останется положительная энергия, а в другой - отрицательная.

Однако ничего подобного не происходит. Как только цельный магнит разрезается на 2 части, в каждой из них тут же образуются 2 полюса. Можно разрезать один кусок на 20 частей. Ничего не изменится. Каждый кусочек окажется с 2-мя полюсами.

Однако мы коснулись самой заветной мечты физиков. Они надеются найти в природе или получить экспериментальным путём монополь - одиночный магнитный полюс. Этой заветной мечте уже более 100 лет. На чём же она базируется?

Специалисты проводят аналогию с электроном. Он является носителем электрического заряда. Соответственно, должен существовать и элементарный магнитный заряд. Но пока ничего похожего в окружающем мире не обнаружено.

Природа магнетизма неразрывна с микромиром, который состоит из атомов и молекул. Его изучением занимается квантовая механика, нам же нужно знать, что каждая мельчайшая частица представляет собой микромагнит. Это элементарный диполь, у которого северный и южный полюса направлены в разные стороны. Поэтому их магнитные силы компенсируют друг друга.

Но иногда случиться так, что элементарные частицы формируются в относительном порядке. Все северные полюса при этом направлены в одну сторону, а южные полюса, соответственно, в другую. В этом случае в окружающем тело пространстве возникает магнитное поле .

Представим себе, что перед нами находится магнит. Поднесём к нему обычный железный гвоздь. Он состоит из микрочастиц, которые расположены хаотично. Но под действием магнитного поля они повернутся строго параллельно друг к другу. В результате этого гвоздь сам превратится в магнит. Против южного полюса магнитного поля у него появится свой северный полюс, а против северного - южный полюс. Из физики мы знаем, что разноимённые магнитные полюса притягиваются. Поэтому железный гвоздь и прилипнет к магниту.

Давно известно, что намагничиваются все тела: твёрдые, газообразные, жидкие. Но у большинства этих веществ степень намагничивания очень низкая. Заметить её можно лишь при помощи сверхточных приборов. К примеру, платина, олово, титан притягиваются к магниту, но их сила притяжения в сотни тысяч раз меньше, чему у стали или железа. В обычной жизни все думают, что они вообще не притягиваются.

В чём же тут причина? А в том, что не у всех веществ атомы проявляют магнитные свойства. Сам по себе атом довольно сложная частица материи. Она имеет тяжёлое ядро, вокруг которого вращаются электроны. Все составляющие атома находятся в движении и создают вокруг себя магнитное поле. Иначе можно сказать, что они обладают определённым магнитным моментом .

Магнитные поля складываются и образуют общий магнитный момент атома. Однако у разных атомов он различается. Если взять ферромагнетики , к которым относятся железо, никель, кобальт и их сплавы, то здесь каждый атом представляет собой микроскопический магнит. А вот у других веществ магнитные моменты атомов практически близки к нулю.

Примечаетльно то, что у ферромагнетиков атомы объединяются в большие группы. Называются они доменами . Каждый такой домен характеризуется одинаковым направлением магнитных моментов. То есть можно сказать, что в ферромагнитных веществах всегда присутствуют намагниченные участки. Каждый такой участок насчитывает в себе миллиарды атомов.

Когда на ферромагнетик не действует внешнее магнитное поле, он никак не проявляет магнитных свойств. В такой ситуации магнитные моменты доменов нейтрализуют друг друга за счёт теплового движения атомов. Но стоит появиться внешним магнитным силам, и вещество становится магнитом. Причём его свойства сохраняются и после снятия внешнего магнитного поля. Это означает, что часть доменов не возвращается к хаотическому состоянию, а остаётся строго ориентированной.

Разговор у нас шёл о парамагнитных телах. Но кроме них существуют вещества, которые не притягиваются, а отталкиваются от магнита. К ним, например, относятся золото, серебро и висмут. Называют их диамагнетиками. В чём же заключается причина этого парадокса?

Дело в том, что при намагничивании железа в нём возникают разноимённые с магнитом полюсы. А у золота или висмута идёт другой процесс. У северного полюса магнита возникает северный полюс, а у южного, соответственно, южный полюс. Вот поэтому диамагнетики и отталкиваются.

Такова в самой общей и упрощённой форме природа магнетизма. Но это чудодейственное явление пока ещё не выяснено с достаточной полнотой. Несомненно, наука в этой области откроет ещё много удивительных вещей, которые прольют свет на загадочные процессы и явления. И тогда, наверное, каждый из нас сможет понять и объяснить, что же всё-таки представляет собой магнетизм, который является одной из главных загадок окружающего нас мира.

Еще за тысячу лет до первых наблюдений электрических явлений, человечество уже начало накапливать знания о магнетизме . И всего четыреста лет тому назад, когда становление физики как науки только началось, исследователи отделили магнитные свойства веществ от их электрических свойств, и только после этого начали изучать их самостоятельно. Так было положено экспериментальное и теоретическое начало, ставшее к середине 19 века фундаментом единой теории электрических и магнитных явлений .

Похоже, что необычные свойства магнитного железняка были известны еще в период бронзового века в Месопотамии. А после начала развития железной металлургии люди заметили, что он притягивает изделия из железа. О причинах этого притяжения задумывался и древнегреческий философ и математик Фалес из города Милет (640−546 гг. до н. э.), он объяснял это притяжение одушевленностью минерала.

Греческие мыслители представляли, как невидимые пары окутывают магнетит и железо, как эти пары влекут вещества друг к другу. Слово «магнит» могло произойти он названия города Магнесии-у-Сипила в Малой Азии, недалеко от которого залегал магнетит. Одна из легенд рассказывает, что пастух Магнис как-то оказался со своими овцами рядом со скалой, которая притянула к себе железный наконечник его посоха и сапоги.

В древнекитайском трактате «Весенние и осенние записи мастера Лю» (240 г. до н. э.) упоминается свойство магнетита притягивать к себе железо. Через сто лет китайцы отметили, что магнетит не притягивает ни медь, ни керамику. В 7-8 веках они заметили, что намагниченная железная игла, будучи свободно подвешена, поворачивается по направлению к Полярной звезде.

Так ко второй половине 11 века в Китае начали изготавливать морские компасы, которые европейские мореплаватели освоили лишь через сто лет после китайцев. Тогда китайцы уже обнаружили способность намагниченной иглы отклоняться в направлении восточнее северного, и открыли таким образом магнитное склонение, опередив в этом европейских мореплавателей, пришедших к точно такому выводу только в 15 столетии.

В Европе первым свойства природных магнитов описал философ из Франции Пьер де Марикур, который в 1269 году пребывал на службе в армии сицилийского короля Карла Анжуйского. В период осады одного из итальянских городов, он отправил другу в Пикардию документ, вошедший в историю науки под названием «Письмо о магните», где и рассказал о своих экспериментах с магнитным железняком.

Марикур отметил, что в любом куске магнетита есть две области, которые особенно сильно притягивают к себе железо. Он заметил в этом сходство с полюсами небесной сферы, поэтому позаимствовал их названия для обозначения областей максимума магнитной силы. Оттуда и пошла традиция называть полюса магнитов южным и северным магнитными полюсами.

Марикур писал, что если разбить любой кусок магнетита на две части, то в каждом осколке появятся собственные полюса.

Марикур впервые связал эффект отталкивания и притяжения магнитных полюсов с взаимодействием разноименных (южного и северного), либо одноименных полюсов. Марикур по праву считается пионером европейской экспериментальной научной школы, его заметки о магнетизме воспроизводились в десятках списков, а с появлением книгопечатания издавались в форме брошюры. Их цитировали многие ученые натуралисты вплоть до 17 столетия.

С трудом Марикура был хорошо знаком и английский естествоиспытатель, ученый и врач Уильям Гильберт. В 1600 году он опубликовал труд «О магните, магнитных телах и большом магните - Земле». В этом труде Гильберт привел все известные на тот момент сведения о свойствах природных магнитных материалов и намагниченного железа, а также описал свои собственные опыты с магнитным шаром, в которых воспроизвел модель земного магнетизма.

В частности он опытным путем установил, что на обоих полюсах «маленькой Земли» стрелка компаса поворачивается перпендикулярно ее поверхности, у экватора устанавливается параллельно, а на средних широтах - поворачивается в промежуточное положение. Таким образом Гильберту удалось смоделировать магнитное наклонение, о котором в Европе знали более 50 лет (в 1544 году его описал Георг Хартман, механик из Нюрнберга).

Гильберт воспроизвел также геомагнитное склонение, которое он приписал не идеально гладкой поверхности шара, а в масштабе планеты объяснил этот эффект притяжением между континентами. Он обнаружил, как сильно разогретое железо теряет свои магнитные свойства, а при охлаждении - восстанавливает их. Наконец, Гильберт первым четко различил притяжение магнита и притяжение янтаря, натертого шерстью, которое назвал электрической силой. Это был поистине новаторский труд, оцененный как современниками, так и потомками. Гильберт открыл, что Землю будет правильным считать «большим магнитом».

До самого начала XIX века наука о магнетизме продвинулась очень немного. В 1640 году Бенедетто Кастелли, ученик Галилея, объяснил притяжение магнетита множеством очень маленьких магнитных частиц, входящих в его состав.

В 1778 году Себальд Бругманс, уроженец Голландии, заметил, как висмут и сурьма отталкивали полюса магнитной стрелки, что стало первым примером физического феномена, который позже Фарадей назовет диамагнетизмом .

Шарль-Огюстен Кулон в 1785 году, посредством точных измерений на крутильных весах, доказал, что сила взаимодействия магнитных полюсов между собой обратно пропорциональна квадрату расстояния между полюсами - так же точно, как и сила взаимодействия электрических зарядов.

С 1813 года датский физик Эрстед усердно пытался экспериментально установить связь электричества с магнетизмом. В качестве индикаторов исследователь использовал компасы, но долго не мог достичь цели, ведь он ожидал, что магнитная сила параллельна току, и располагал электрический провод под прямым углом к стрелке компаса. Стрелка никак не реагировала на возникновение тока.

Весной 1820 года, во время одной из лекций, Эрстед натянул провод параллельно стрелке, причем не ясно, что привело его к этой идее. И вот стрелка качнулась. Эрстед почему-то прекратил эксперименты на несколько месяцев, после чего вернулся к ним и понял, что «магнитное воздействие электрического тока направлено по окружностям, охватывающим этот ток».

Вывод был парадоксальным, ведь раньше вращающиеся силы не проявляли себя ни в механике, ни где-либо еще в физике. Эрстед написал статью, где изложил свои выводы, и больше электромагнетизмом так и не занимался.

Осенью того же года француз Андре-Мари Ампер приступил к опытам. Перво-наперво повторив и подтвердив результаты и выводы Эрстеда, в начале октября он обнаружил притяжение проводников, если токи в них направлены одинаково, и отталкивание, если токи противоположны.

Ампер изучил также взаимодействие между непараллельными проводниками с током, после чего описал его формулой, названой позже законом Ампера. Ученый показал и то, что свернутые в спираль провода с током поворачиваются под действием магнитного поля, как это происходит со стрелкой компаса.

Наконец, он выдвинул гипотезу о молекулярных токах, согласно которой внутри намагниченных материалов имеют место непрерывные микроскопические параллельные друг другу круговые токи, служащие причиной магнитного действия материалов.

В то же время Био и Савар совместно вывели математическую формулу, позволяющую вычислять интенсивность магнитного поля постоянного тока.

И вот, к концу 1821 года Майкл Фарадей, уже работавший в Лондоне, изготовил устройство, в котором проводник с током вращался вокруг магнита, а другой магнит поворачивался вокруг другого проводника.

Фарадей выдвинул предположение, что и магнит, и провод окутаны концентрическими силовыми линиями, которые и обуславливают их механическое воздействие.

Со временем Фарадей уверился в физической реальности силовых магнитных линий. К концу 1830-х ученый уже четко осознавал, что энергия как постоянных магнитов, так и проводников с током, распределена в окружающем их пространстве, которое заполнено силовыми магнитными линиями. В августе 1831 года исследователю удалось заставить магнетизм производить генерацию электрического тока.

Устройство состояло из железного кольца с расположенными на нем двумя противоположными обмотками. Первую обмотку можно было замыкать на электрическую батарею, а вторая соединялась с проводником, помещенным над стрелкой магнитного компаса. Когда по проводу первой катушки тек постоянный ток, стрелка не меняла своего положения, но начинала качаться в моменты его выключения и включения.

Фарадей пришел к заключению, что в эти моменты в проводе второй обмотки возникали электрические импульсы, связанные с исчезновением или возникновением магнитных силовых линий. Он сделал открытие, что причиной возникающей электродвижущей силы является изменение магнитного поля.

В ноябре 1857 года Фарадей написал письмо в Шотландию профессору Максвеллу с просьбой придать математическую форму знаниям об электромагнетизме. Максвелл просьбу выполнил. Понятие электромагнитного поля нашло место в 1864 году в его мемуарах.

Максвелл ввел термин «поле» для обозначения части пространства, которая окружает и содержит тела, пребывающие в магнитном или электрическом состоянии, причем он особо подчеркнул, что само это пространство может быть и пустым и заполненным совершенно любым видом материи, а поле все равно будет иметь место.

В 1873 году Максвелл издал «Трактат об электричестве и магнетизме», где представил систему уравнений, объединяющих электромагнитные явления. Он дал им название общих уравнений электромагнитного поля, и по сей день они зовутся уравнениями Максвелла. По теории Максвелла магнетизм - это взаимодействие особого рода между электрическими токами . Это фундамент, на котором построены все теоретические и экспериментальные работы, относящиеся к магнетизму.

О природе земного магнетизма


Было время, когда люди, пытаясь объяснить, почему магнитная стрелка всегда одним своим концом показывает на север, полагали, что земной магнетизм находится на небе, что стрелку компаса направляют магнитные силы, исходящие из Полярной звезды. О том, что сама Земля представляет собой большой шарообразный магнит, с полюсами и с внешним магнитным полем, которое действует на стрелку компаса, люди узнали сравнительно недавно, около 350 лет назад. Великий русский ученый М. В. Ломоносов, придавая важное значение наблюдениям за компасной стрелкой, еще в 1759 году предложил построить самопишущий компас, который мог бы записывать эти наблюдения во время движения корабля.
По мере исследования земного магнетизма постепенно раскрывались различные его свойства. Прежде всего было доказано, что географические меридианы не совпадают с магнитными, направление которых на поверхности Земли указывает компасная стрелка, и что, таким образом, магнитная ось Земли не совпадает с ее осью вращения. Ученые установили, что направление земного магнитного поля соответствует такому, которое получилось бы, если бы около центра Земли поместить магнит, ось которого составляет с осью вращения нашей планеты угол около 11,5°.
Магнитное поле характеризуется в каждой точке пространства не только направлением, но и величиной напряженности. На поверхности Земли эта напряженность сравнительно небольшая приблизительно такая, какую имеет обычный школьный магнит на расстоянии 10 - 15 см от его концов. Напряженность земного магнитного поля можно представить как равнодействующую двух составляющих: вертикальной и горизонтальной. Последняя направляет компасную стрелку по магнитному меридиану.
Если передвигаться с компасом в руке вдоль какой-нибудь широты вокруг земного шара, то окажется, что направление магнитного меридиана в редких случаях совпадает с географическим; между этими направлениями почти всегда имеется некоторый угол, который называется магнитным склонением. Направление стрелки компаса может отклоняться от географического меридиана к востоку или к западу. Магнитное склонение находят для всех мест земного шара и составляют кар ты распределения этого склонения. Если известно в данном месте склонение компаса, то можно определить и направление географического меридиана. Это дает возможность установить местоположение корабля на море или самолета над земной поверхностью.
Но магнитное поле Земли медленно меняется во времени, вследствие этого меняется и склонение магнитной стрелки. Поэтому приходится периодически составлять заново карты, на которых показано распределение магнитного склонения.
Россия одной из первых учредила в начале XIX века магнитные обсерватории. Однако только в ХХ веке путем генеральной магнитной съемки были созданы детальные карты распределения магнитного поля на всей территории страны; это дает возможность строить и карты магнитного склонения, необходимые для штурманской службы.
Медленные (вековые) изменения земного магнитного поля имеют повидимому почти периодический характер: в течение 400-600 лет напряженность геомагнитного поля меняется на 1-2% своей величины. Однако для разных мест поверхности Земли эта периодичность выражается различно.
Около двухсот лет назад было обнаружено, что наряду с медленными изменениями земного магнетизма имеют место сравнительно быстрые - как правильные, так и неправильные - колебания напряженности земного магнитного поля. Правильные колебания совпадают с некоторыми астрономическими периодами: суточным обращением Земли около своей оси, лунными сутками и годичным обращением Земли в круг Солнца. Размах этих колебаний невелик: суточные колебания магнитного поля составляют около 0.05% полной напряженности геомагнитного поля, причем летом они больше, чем зимой; колебания в течение лунных суток и того меньше - около 0,005%; годичные колебания напряженности также составляют несколько сотых процента напряженности поля.
Кроме того, наблюдаются неправильные изменения земного магнитного поля, так называемые магнитные бури, которые наступают внезапно и продолжаются от нескольких часов до нескольких суток. Во время бурь изменение напряженности магнитного поля достигает нескольких процентов. Большей частью магнитные бури совпадают с северными сияниями и тесно связаны с явлениями, наблюдаемыми на Солнце, в частности с солнечными пятнами.
Геомагнитное поле нерегулярно изменяется не только во времени, но и в пространстве при передвижении по поверхности Земли. Существуют места, где напряженность магнитного поля значительно больше (а иногда и меньше), чем в окружающем районе. Такие изменения земного поля называются магнитными аномалиями. Мировую известность имеет, например, район Курской магнитной аномалии, где напряженность магнитного поля в три-четыре раза превосходит нормальную напряженность окружающего района. Сильные магнитные аномалии обычно имеют место над теми районами земной коры, которые содержат в себе большие количества железной руды - магнетита.
Как же объясняются основные особенности магнитного поля Земли? Самой трудной оказалась для науки проблема происхождения главного геомагнитного поля, которое в течение последних миллионов лет остается почти постоянным, подвергаясь лишь небольшим изменениям. По этому вопросу были высказаны самые различные предположения. Одни ученые утверждали, что Земля полечила свой магнетизм в магнитном поле Солнца. Дальнейшие исследование, однако, не подтвердили это предположение. Хотя и возникают иногда сильные магнитные поля в районе так называемых солнечных пятен, но в целом Солнце не имеет заметного магнитного поля на расстоянии радиуса орбиты Земли. Не подтвердилась также другая гипотеза, согласно которой Земля, имеющая постоянный электрический заряд, вследствие своего суточного вращения должна образовать вокруг себя магнитное поле. Расчеты показывают, что поверхностный заряд Земли в общем невелик и может при вращении Земли образовать лишь ничтожно малое магнитное поле.
В последнее время выдвинута гипотеза о происхождении земного магнетизма, которая объясняет его возникновение вращением массы Земли. По этой теории всякая вращающаяся масса создает магнетизм вне зависимости от электрического состояния этой массы. Еще наш великий ученый П. Н. Лебедев хотел на опыте проверить такое предположение: он подвергал очень быстрому вращению различные тела, но возникновение магнетизма у них не было обнаружено.
Наконец, некоторые ученые полагают, что источники магнитного поля сосредоточены где-то значительно ниже поверхности Земли.

Все высказывавшиеся до сих пор предположения о происхождении земного магнетизма не являются общепринятыми в науке. Вероятно, явление главного магнитного поля Земли представляет собой сложную комбинацию двух основных процессов: системы замкнутых электрических токов с магнитной осью, смещенной по отношению к оси вращения Земли, и остаточного намагничения горных пород, богатых магнетитом, в верхних слоях земной коры. Первый процесс является устойчивым, создающим основную величину напряженности главного магнитного поля. К нему присоединяется поле остаточного намагничивания земной коры. Оно могло образоваться под действием радиоактивного тепла в процессе разогревания и остывания в земном магнитном поле горных пород, содержащих магнетит. Что касается временных изменений главного магнитного поля, то их объясняют следующим образом. Вековые изменения объясняются с помощью колебаний температуры в нижележащих слоях земной коры; повышение или понижение температуры изменяет намагниченность горных пород и вызывает колебания магнитного поля на поверхности Земли.
Суточные вариации геомагнитного поля определяются движением ионизированных масс воздуха в высоких слоях атмосферы, в так называемой ионосфере. Ионизация же воздуха происходит под действием солнечных лучей, поскольку интенсивность солнечного излучения больше около полудня и особенно в летние дни, то и суточные вариации геомагнитного поля принимают в это время наибольшее значение. Магнитные бури объясняются тем, что Земля попадает в потоки солнечного корпускулярного излучения. На Солнце происходят процессы извержения отдельных частиц, которые иногда выбрасываются далеко за пределы орбиты Земли. Эти частицы обладают большой ионизирующей способностью и быстро увеличивают количество электрических зарядов в ионосфере. Движение этих зарядов создает магнитное поле, которое и воспринимается на Земле как магнитная буря.
Таким образом, земной магнетизм представляет собой весьма сложное явление: в создании его участвуют различные части Земли и разнообразные физические процессы. Несомненно, что дальнейшие успехи российской геофизики, астрономии и других наук позволят в ближайшее время найти новые данные о происхождении, земного магнетизма, которые правильно объяснят одно из интереснейших явлений природы.

Физика не только описывает то или иное явление природы, но и объясняет, почему это явление происходит. В самом начале нашего курса мы говорили о том, что некоторые элементарные частицы, такие, например, как протон или электрон, обладают свойством, которое называется электрическим зарядом. Заряды взаимодействуют с электрическими силами посредством особой формы материи – электрического поля. Но всё же ответить на вопрос, почему взаимодействуют заряды, или почему поле одного заряда действует на другой заряд, невозможно. Можно только сказать, что так устроена природа, и что основное свойство электрического поля – действие на заряды.

Движущиеся заряды создают магнитное поле и посредством этого поля взаимодействуют между собой с магнитными силами. Оказывается на вопрос о причинах магнитного взаимодействия ответить можно. Правда, основываясь на факте существования взаимодействия электрического. Этой важной проблеме и посвящён данный раздел.

Пусть параллельно прямому металлическому проводу длиной с токомдвижется отрица­тельно заряженная частица на расстоянииот провода и со скоростьюv относительно про­вода, направленной против тока (рис. 3.30). Пусть, например, заряд частицы равен заряду электрона
. Провод с током на рас­сто­яниисоздаёт магнитное поле с индукцией
(см. формулу 3.14; предполагаем, что
и используем формулу для бесконечно длинного провода). Это поле действует на частицу с силой Лоренца
, направленной к проводу. Электроны в проводе движутся в направлении, противоположном направлению силы тока в проводе, т.е. параллельно частице. Для простоты рассуждений (но без потери смысла) примем, что все электроны в проводе движутся также с постоянной скоростьюv . Тогда сила тока
(см. формулу 2.23), где концентрация электронов; S – площадь поперечного сечения провода. Следовательно, сила Лоренца

. (3.54)

Действие этой силы обнаружит наблюдатель 1, связанный с системой отсчёта 1, покоящейся относительно провода. Отметим, что в системе отсчёта 1 провод электрически нейтрален – заряды электронов и ионов компенсируют друг друга, т.е. концентрации электронов и ионов одинаковы (и равны ), поэтому электрическая сила на частицу не действует.

Теперь перейдём в новую инерциальную систему отсчёта 2, движущуюся с постоянной скоростью v в направлении движения частицы. В этой системе отсчёта как частица, так и электроны в проводе будут покоиться. Зато движутся со скоростью v положительно заряженные ионы, т.е. узлы кристаллической решётки металла. Поскольку для наблюдателя 2, находящегося в этой системе отсчёта (т.е. движущегося со скоростью v ), скорость частицы равна нулю, сила Лоренца тоже равна нулю. Получается, что сила, действующая на частицу, исчезла в новой инерциальной системе отсчёта. Однако, согласно принципу относительности Эйнштейна (который уже обсуждался в п. 3.15), в любых инерциальных системах отсчёта все физические явления должны протекать одинаково. В данном случае, независимо от выбора инерциальной системы отсчёта, должна существовать сила, действующая на частицу. Она должна быть одинакова для наблюдателей 1 и 2. Правда, в системе отсчёта 2 эта сила не может быть магнитной (силой Лоренца), следовательно, в этой системе отсчёта она имеет иную природу.

Для того чтобы понять природу силы, действующей на частицу в системе отсчёта 2, необходимо обратится к одному из самых замечательных результатов специальной теории относительности Эйнштейна. Многие физические величины являются относительными. Это совершенно очевидно, когда мы говорим, например, о такой физической величине как скорость, которая может быть разной в различных системах отсчёта. Например, утверждение «тело движется со скоростью 5 м/с» бессмысленно, пока не будет указано, относительно какого тела (т.е. системы отсчёта) движется данное тело с этой скоростью. Долгое время таким же очевидным считался тот факт, что расстояние между двумя точками есть величина абсолютная, независящая от системы отсчёта. Эйнштейн подверг сомнению этот никем не доказанный факт. Согласно его теории относительности расстояние между двумя точками или размеры тела вдоль направления его движения (длина) могут изменяться, при этом поперечные размеры, в направлении перпендикулярном движению тела (ширина) не изменяются. Фактически, длина тела в зависимости от системы отсчёта может быть любой . Она изменяется от нулевого значения до некоторого максимального:

. (3.55)

Формула (3.55) показывает, что максимальную длину тело имеет в системе отсчёта, где оно покоится: при v =0 получаем
. Минимальная же длина не ограничена. Она меньше в тех системах отсчёта, где скорость тела больше. При скоростях v , близких к скорости света , длина стремится к нулю.

Пусть в системе отсчёта 1, где проводник покоится, его длина равна . В системе отсчёта 2 проводник движется, поэтому его длина и объём становятся меньше (площадь сеченияне изменяется). Число ионов кристаллической решётки
остаётся прежним, значит, при переходе к системе отсчёта 2 увеличивается их концентрация:

где
 концентрация ионов в системе отсчёта 1,
 концентрация ионов в системе отсчёта 2. Электроны, наоборот, в системе отсчёта 1 двигались со скоростью v , а в системе отсчёта 2 они покоятся. Следовательно, концентрация электронов при переходе к системе отсчёта 2 уменьшается:
. Отсюда следует вывод: в системе отсчёта 2 проводник становитсяэлектрически заряженным , поскольку концентрация положительно запряженных ионов стала больше концентрации электронов. Положительно заряженный провод будет притягивать отрицательно заряженную частицу. Таким образом, в системе отсчёта 2 на частицу по-прежнему действует сила, направленная к проводу. Только природа этой будет электрической.

Докажем, что электрическая сила, действующая на частицу в системе отсчёта 2, в точности равна силе Лоренца (см. формулу (3.54)), действующей на частицу в системе 1.

Сначала выразим линейную плотность заряда провода через концентрацию зарядов:

.

Линейная плотность положительных зарядов провода
, линейная плотность отрицательных зарядов
. Результирующая линейная плотность заряда провода. Будем полагать, что
, т.е. величина
очень мала (даже при больших токах дрейфовая скорость электронов в проводе составляет обычно лишь несколько мм/с). Тогда разность концентраций ионов и электронов в проводе:

(здесь использованы приближённые формулы:
и
, справедливые при малых значениях). Тогда

. (3.56)

Электрическое поле, создаваемое проводом с линейной плотностью заряда на расстоянииот него
(см. формулу (1.19)). Сила, действующая на частицу в системе 2:
. Учитывая выражение (3.56), получаем:
. Так как
(см. формулу (3.53)), то:
, что в точности совпадает с результатом (3.54). Равенство сил, действующих на частицу в системах отсчёта 1 и 2 доказано.

Мы показали, что сила Лоренца, действующая в системе отсчёта 1, преобразуется в электрическую силу, действующую в системе отсчёта 2. Понятно, что справедливым будет и обратное утверждение о том, что электрическая сила, действующая в системе отсчёта 2, преобразуется в силу Лоренца при переходе к системе отсчёта 1. Таким образом, проявление магнетизма можно объяснить с точки зрения теории относительности. Говорят, что магнетизм – есть релятивистское явление.

Релятивистскими явлениями обычно называют явления, которые можно объяснить при помощи теории относительности. Особенно сильно эти явления начинают проявлять себя при скоростях тел, близких к скорости света. Если скорости тел малы по сравнению со скоростями света, то релятивистские явления или эффекты обычно незаметны. Почему же столь явно проявляет себя сила Лоренца в системе отсчёта 1, ведь скорость частицы невелика? Почему же столь явно взаимодействуют, например, два параллельных провода с током? Ответ на эти вопросы прост: проводники, по которым течёт ток, в высокой степени нейтральны. Магнитные силы на фоне мощного электрического взаимодействия были бы незаметны (попробуйте доказать, что электрические силы в
раз больше магнитных сил). Однако электрическое взаимодействие отсутствует, и действие магнитных сил становится явным.

В заключение отметим ещё один важный факт. В системе отсчёта 1 на заряженную частицу действовала магнитная сила, а в системе отсчёта 2 – электрическая. Поэтому, говоря о взаимодействии зарядов, можно говорить о величине силы взаимодействия, но не имеет смысла говорить отдельно об электрическом или магнитном взаимодействии, не указывая систему отсчёта, в которой ведётся наблюдение. Электрические и магнитные взаимодействия зарядов  две части одного и того же явления электромагнитного взаимодействия , одинакового во всех инерциальных системах отсчёта.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

Обобщающий урок физики по теме: "Магнитные явления".

Цели:

Образовательные – обобщить и систематизировать знания учащихся о магнитном поле, о его свойствах; способствовать развитию интереса к изучению физики;

Развивающие – в целях формирования научного мировоззрения подчеркнуть реальность и объективность существования магнитного поля, указать экспериментальные факты, доказывающие это положение; развивать интеллектуальные способности учащихся через умение решать задачи повышенной сложности, анализировать полученный результат, делать выводы; уметь излагать в доступной научной форме свои мысли; уметь обобщать материал; развивать свой кругозор.

Воспитательная – воспитывать умение преодолевать трудности, выслушивать оппонентов, отстаивать свою точку зрения, уважать окружающих, воспитывать чувство коллективизма и умение работать в группе.

Оборудование: интерактивная доска, плакат с кроссвордом, карточки с разноуровневыми заданиями, жетоны.

План урока

  1. Организационный момент – (1 мин).
  2. Физкультминутка.(2 мин)
  3. Объявление темы и целей урока.(1 мин)
  4. Актуализация знаний.(5 мин)

4. Видеосюжет «Магнитная стрелка». (1 мин)

5. Разгадывание кроссворда – 4 мин.

6. Групповая работа.

1 задание: 15 минут

Каждой группе дается карточка с шестью разноуровневыми вопросами. Время на подготовку 1 минута.

2 задание: Заполнить таблицу. 5 мин.

3 задание: Игра «Домино». 6 мин

Индивидуальная работа с учащимися (решение задачи – 3 человека) и с остальными учащимися - игра «Домино».

  1. Решение задачи у доски с комментариями – 1 человек. (по ходу проверяю решение индивидуальных задач)
  2. Видеосюжет «Явление электромагнитной индукции».1 мин
  3. Загадки.
  4. Подведение итогов.
  5. Рефлексия.

Ход урока.

  1. Организационный момент.
  2. Физкультминутка.
  3. Объявление целей урока.

Ребята, сегодня у нас обобщающий урок по разделу «Магнитные явления». Эпиграфом нашего урока являются слова Ф.И.Тютчева:

Не то, что мните вы, природа:

Не слепок, не бездушный лик, -

В ней есть душа, в ней есть свобода

В ней есть любовь, в ней есть язык!

Да у природы есть свой язык, и мы должны его понимать. На каждом уроке физики, при изучении любого явления мы учимся этому языку. Путь познания природы таков:

Открытие – исследование – объяснение – применение.

Цель нашего урока – обобщить и систематизировать ранее полученные знания.

В течении урока ответ каждого учащегося будет оцениваться одним баллом (жетоном) и суммарным количеством баллов в конце урока будет выставляться оценка.

От 1-3 – оценка «3», 4-6 – «4», 7 – и более – оценка «5»

  1. Фронтальный опрос.

Учитель: Уважаемые ребята, на сегодняшнем уроке нам предстоит еще раз рассмотреть вопрос о магнитных явлениях и о свойствах магнитного поля.

Что такое магнитное поле?

(Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами.)

Каковы свойства магнитного поля?

(1. Магнитное поле порождается током.

2. Магнитное поле обнаруживается по его действию на ток или на магнитную стрелку.)

Как называется величина, характеризующая магнитное поле? (Эта величина называется – Магнитная индукция)

Ребята мы уже говорили о том, что магнитное поле возникает в результате электрического поля. А давайте еще раз посмотрим порождение магнитного поля электрическим на интерактивной доске.

5. Видеосюжет «Магнитная стрелка».

Кто из ученых определил величину силы, действующей на проводник с током, помещенный в магнитное поле, и как она называется?

(Величину этой силы определил английский ученый Ампер. Она получила название в честь него как сила Ампера.)

Кто из ученых определил величину силы, действующей со стороны магнитного поля на движущийся заряд?

(Величину силы, действующей на движущийся заряд в магнитном поле, определил Лоренц.)

Приведите примеры использования магнитных полей для различных целей.

(Магнитные поля используются в измерительных электрических приборах, для измерения отклонения электронного пучка в электронно-лучевой трубке или в кинескопе телевизора, для нахождения масс элементарных заряженных частиц, в электромагнитах. В природе магнитное поле Земли предохраняет все живое на земле от потока космических частиц.)

6. Разгадывание кроссворда

- А теперь, ребята, давайте разгадаем кроссворд, который у нас находится на магнитной доске.

Мы по вертикали получили слово «Фарадей». Кто он, какой вклад он внес в развитие физики? Фарадей – первый опытным путем доказал явление электромагнитной индукции.

7. Группа делится на три команды. (парамагнетики, ферромагнетики, диамагнетики)

1 задание: время 15 минут

Каждой группе дается карточка с шестью разноуровневыми вопросами. Время на подготовку 1 минута. (2 группа 4 задание – демонстрация опыта)

2 задание: время 5 мин

Заполнить таблицу.

3 задание: 6 мин (игра «Домино»)

Индивидуальная работа с учащимися и с остальными учащимися - игра «Домино»

  1. Видеосюжет «Явление электромагнитной индукции».

Ребята, вначале урока мы с вами просмотрели сюжет того, что магнитное поле возникает в результате электрического. Теперь давайте посмотрим явление, обратное ему, т.е. магнитное поле создает электрическое поле.

  1. Подведение итогов.

Командиры выставляют самооценки.

  1. Рефлексия.

Дети, понравился ли вам сегодня наш урок?

Чем именно он вам понравился?

Где у вас были затруднения?

Нужно ли проводить такие уроки?

11. Домашнее задание: по тетради повторить основные понятия .