Транспорт глюкозы в клетки осуществляет гемоглобин. Для переноса моносахаридов через мембраны требуются белки-транспортеры

Глюкоза поступает из кровотока в клетки путём облегчённой диффузии с помощью белков-переносчиков - ГЛЮТов. Глюкозные транспортёры ГЛЮТы имеют доменную организацию и обнаружены во всех тканях. Выделяют 5 типов ГЛЮТов:
ГЛЮТ-1 - преимущественно в мозге, плаценте, почках, толстом кишечнике;
ГЛЮТ-2 - преимущественно в печени, почках, β-клетках поджелудочной железы, энтероцитах, есть в эритроцитах. Имеет высокую Км;
ГЛЮТ-3 - во многих тканях, включая мозг, плаценту, почки. Обладает большим, чем ГЛЮТ-1, сродством к глюкозе;
ГЛЮТ-4 - инсулинзависимый, в мышцах (скелетной, сердечной), жировой ткани;
ГЛЮТ-5 - много в клетках тонкого кишечника, является переносчиком фруктозы.

ГЛЮТы, в зависимости от типа, могут находиться преимущественно как в плазматической мембране, так и в цитозольных везикулах. Трансмембранный перенос глюкозы происходит только тогда, когда ГЛЮТы находятся в плазматической мембране. Встраивание ГЛЮТов в мембрану из цитозольных везикул происходит под действием инсулина. При снижении концентрации инсулина в крови эти ГЛЮТы снова перемещаются в цитоплазму. Ткани, в которых ГЛЮТы без инсулина почти полностью находятся в цитоплазме клеток (ГЛЮТ-4, и в меньшей мере ГЛЮТ-1), оказываются инсулинзависимыми (мышцы, жировая ткань), а ткани, в которых ГЛЮТы преимущественно находятся в плазматической мембране (ГЛЮТ-3) - инсулиннезависимыми.

Известны различные нарушения в работе ГЛЮТов. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета.

Метаболизм моносахаридов в клетке.
После всасывания в кишечнике глюкоза и другие моносахариды поступают в воротную вену и далее в печень. Моносахариды в печени превращаются в глюкозу или продукты её метаболизма. Часть глюкозы в печени депонируется в виде гликогена, часть идет на синтез новых веществ, а часть через кровоток, направляется в другие органы и ткани. При этом печень поддерживает концентрацию глюкозы в крови на уровне 3,3-5,5 ммоль/л.

Фосфорилирование и дефосфорилирование моносахаридов.
В клетках глюкоза и другие моносахариды с использованием АТФ фосфорилируются до фосфорных эфиров: глюкоза + АТФ → глюкоза-6ф + АДФ. Для гексоз эту необратимую реакцию катализирует фермент гексокиназа , которая имеет изоформы: в мышцах - гексокиназа II, в печени, почках и β-клетках поджелудочной железы - гексокиназа IV (глюкокиназа), в клетках опухолевых тканей - гексокиназа III. Фосфорилирование моносахаридов приводит к образованию реакционно-способных соединений (реакция активации), которые не способны покинуть клетку т.к. нет соответствующих белков-переносчиков. Фосфорилирование уменьшает количество свободной глюкозы в цитоплазме, что облегчает ее диффузию из крови в клетки.

Гексокиназа II фосфорилирует D-глюкозу, и с меньшей скоростью, другие гексозы. Обладая высоким сродством к глюкозе (Кm <0,1 ммоль/л), гексокиназа II обеспечивает поступление глюкозы в ткани даже при низкой концентрации глюкозы в крови. Так как гексокиназа II ингибируется глюкозо-6-ф (и АТФ/АДФ), глюкоза поступает в клетку только по мере необходимости.

Глюкокиназа (гексокиназа IV) имеет низкое сродство к глюкозе, активна в печени (и почках) при повышении концентрации глюкозы (в период пищеварения). Глюкокиназа не ингибируется глюкозо-6-фосфатом, что дает возможность печени без ограничений удалять излишки глюкозы из крови.

Глюкозо-6-фосфатаза катализирует необратимое отщепление фосфатной группы гидролитическим путём в ЭПР: Глюкозо-6-ф + Н 2 О → Глюкоза + Н 3 РО 4 , есть только в печени, почках и клетках эпителия кишечника. Образовавшаяся глюкоза способна диффундировать из этих органов в кровь. Таким образом, глюкозо-6-фосфатаза печени и почек позволяет повышать низкий уровень глюкозы в крови.

Метаболизм глюкозо-6-фосфата
Глюкозо-6-ф может использоваться клетке в различных превращениях, основными из которых являются: катаболизм с образованием АТФ, синтез гликогена, липидов, пентоз, полисахаридов и аминокислот.

МЕТАБОЛИЗМ ГЛИКОГЕНА.
Многие ткани в качестве резервной формы глюкозы синтезируют гликоген. Синтез и распад гликогена в печени поддерживают гомеостаз глюкозы в крови.

Гликоген - разветвлённый гомополисахарид глюкозы с массой >10 7 Да (50000 остатков глюкозы), в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления, примерно через каждые 10 остатков глюкозы, мономеры соединены α-1,6-гликозидными связями. Гликоген, водонерастворим, хранится в цитозоле клетки в форме гранул диаметром 10-40 нм. Гликоген депонируется главным образом в печени (до 5%) и скелетных мышцах (до 1%). В организме может содержаться от 0 до 450 г гликогена.

Разветвлённая структура гликогена способствует работе ферментов, отщепляющих или присоединяющих мономеры.

Синтез гликогена (гликогеногенез)
Гликоген синтезируется с затратой энергии в период пищеварения (через 1-2 ч после приёма углеводной пищи).

Синтез гликогена осуществляется путём удлинения уже имеющейся молекулы полисахарида, называемой «затравка », или «праймер ». В состав праймера может входить белок гликогенин, в котором к Тир присоединен олигосахарид (примерно из 8 остатков глюкозы). Глюкозные остатки переносятся гликогенсинтазой на нередуцирующий конец олигосахарида и связываются α-1,4-гликозидными связями.

При удлинении линейного участка примерно до 11 глюкозных остатков, фермент ветвления переносит её концевой блок, содержащий 6-7 остатков, на внутренний остаток глюкозы этой или другой цепи с образованием α-1,6-гликозидной связи. Новая точка ветвления образуется на расстоянии не менее 4 остатков от любой уже существующей точки ветвления.

Распад гликогена (гликогенолиз)
Распад гликогена происходит путем последовательного отщепления глюкозо-1-ф в ответ на повышение потребности организма в глюкозе. Реакцию катализирует гликогенфосфорилаза:

Гликогенфосфорилаза состоит из 2 идентичных субъединиц (94500 Да). Неактивная форма обозначается b, активная - a. Активируется киназой фосфорилазы b путемфосфорилирования каждой субъединицы по серину в 14 положении.

Гликогенфосфорилаза расщепляет фосфоролизом α-1,4-гликозидные связи, до тех пор, пока до точки ветвления не остается 4 остатка глюкозы.

Инактивация гликогенфосфорилазы происходит при дефосфорилировании с участием специфической фосфатазы фосфорилазы (фосфопротеинфосфотазы ФПФ).

Удаление ветвления осуществляет деветвящий фермент . Он обладает трансферазной и гликозидазной активностями. Трасферазная часть (олигосахаридтрансфераза ) переносит три оставшихся до точки ветвления глюкозных остатка на нередуцирующий конец соседней цепи, удлиняя её для фосфорилазы.

Гликозидазная часть (α-1,6-глюкозидаза ) гидролизует α-1,6-гликозидную связь, отщепляя глюкозу.
Глюкозо-1-ф изомеризуется в глюкозо-6-ф фосфоглюкомутазой.


Метаболизм гликогена контролируется гормонами (в печени - инсулином, глюкагоном, адреналином; в мышцах - инсулином и адреналином), которые регулируют фосфорилирование и дефосфорилирование 2 ключевых ферментов гликогенсинтазы и гликогенфосфорилазы.

При недостаточном уровне глюкозы в крови выделяется гормон глюкагон, в крайних случаях – адреналин. Они стимулируют фосфорилирование гликогенсинтазы (она инактивируется) и гликогенфосфорилазы (она активируется). При повышении уровня глюкозы в крови выделяется инсулин, он стимулирует дефосфорилирование гликогенсинтазы (она активируется) и гликогенфосфорилазы (она инактивируется). Кроме того, инсулин индуцирует синтез глюкокиназы, тем самым, ускоряя фосфорилирование глюкозы в клетке. Всё это приводит к тому, что инсулин стимулирует синтез гликогена, а адреналин и глюкагон – его распад.

Конечными продуктами гидролиза углеводов в желудочно-кишечном тракте являются всего три вещества: глюкоза, фруктоза и галактоза. При этом на долю глюкозы приходится почти 80% общего количества этих моносахаридов. После всасывания в кишечнике большая часть фруктозы и практически вся галактоза преобразуются в печени в глюкозу. Вследствие этого в крови присутствуют только небольшие количества фруктозы и галактозы. В итоге процессов превращения глюкоза становится единственным представителем углеводов, транспортируемым во все клетки организма.

Соответствующие ферменты , необходимые клеткам печени для обеспечения процессов взаимного превращения моносахаридов - глюкозы, фруктозы и галактозы - показаны на рисунке. В результате этих реакций, когда печень высвобождает моносахариды обратно в кровь, окончательным продуктом, попадающим в кровь, становится глюкоза. Причина этого явления заключается в том, что клетки печени содержат большое количество глюкозофосфатазы, поэтому глюкозо-6-фосфат может расщепляться на глюкозу и фосфат. Затем глюкоза транспортируется через мембраны клеток обратно в кровь.

Хотелось бы еще раз подчеркнуть , что обычно более 95% всех моносахаридов, циркулирующих в крови, представлены конечным продуктом превращения - глюкозой.
Транспорт глюкозы через мембрану клетки . Прежде чем глюкоза будет использована клетками тканей, она должна транспортироваться через мембраны клеток в цитоплазму. Однако глюкоза не может свободно диффундировать через поры в клеточных мембранах, т.к. максимальная молекулярная масса частиц должна быть в среднем равна 100, в то время как молекулярная масса глюкозы составляет 180. Тем не менее глюкоза может относительно легко проникать внутрь клеток благодаря механизму облегченной диффузии. Основы этого механизма обсуждались в главе 4, напомним его основные моменты.

Насквозь прободая липидную мембрану клеток , белки-переносчики, количество которых в мембране достаточно велико, могут взаимодействовать с глюкозой. В такой связанной форме глюкоза может транспортироваться белком-переносчиком с одной стороны мембраны на другую и там отделяться; если с одной стороны мембраны концентрация глюкозы выше, чем с другой, то глюкоза будет транспортироваться туда, где ее концентрация ниже, а не в противоположном направлении. Транспорт глюкозы через клеточные мембраны в большинстве тканей резко отличается от транспорта, который наблюдается в желудочно-кишечном тракте или в эпителиоцитах канальцевого аппарата почек.

В обоих упомянутых случаях транспорт глюкозы опосредован сопряженным с механизмом активного транспортом натрия. Активный транспорт натрия обеспечивает энергией процесс всасывания глюкозы против градиента концентрации. Такой сопряженный с натрием активный механизм транспорта глюкозы встречается только в специализированных эпителиоцитах, приспособленных для активного процесса абсорбции глюкозы. В других клеточных мембранах глюкоза транспортируется только из областей с высокой концентрацией в область низких концентраций с помощью механизма облегченной диффузии, возможность которого создается особыми свойствами расположенного в мембране белка-переносчика глюкозы.

При использовании углеводов, как впрочем и других веществ, перед организмом стоит две задачи – всасывание из кишечника в кровь и транспорт из крови в клетки тканей. В любом случае необходимо преодолевать мембрану.

Транспорт моносахаров через мембраны

Всасывание в кишечнике

После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.

Вторично-активный транспорт

По механизму вторичного активного транспорта из просвета кишечника происходит всасывание глюкозы и галактозы . Такой механизм означает, что затрата энергии при переносе сахаров происходит, но тратится она не непосредственно на транспорт молекулы, а на создание градиента концентрации другого вещества. В случае моносахаридов таким веществом является ион натрия .

Аналогичный механизм транспорта глюкозы присутствует в эпителии канальцев почек , который реабсорбирует ее из первичной мочи.
Только наличие активного транспорта позволяет перенести из внешней среды внутрь клеток практически всю глюкозу.

Фермент Na + ,К + -АТФаза постоянно, в обмен на калий, выкачивает ионы натрия из клетки, именно этот транспорт требует затрат энергии. В просвете кишечника содержание натрия относительно высоко и он связывается со специфическим мембранным белком, имеющим два центра связывания: один для натрия, другой для моносахарида. Примечательно то, что моносахарид связывается с белком только после того, как с ним свяжется натрий. Белок-транспортер свободно мигрирует в толще мембраны. При контакте белка с цитоплазмой натрий быстро отделяется от него по градиенту концентрации и сразу отделяется моносахарид. Результатом является накопление моносахарида в клетке, а ионы натрия выкачиваются Na + ,К + -АТФазой.

Выход глюкозы из клетки в межклеточное пространство и далее кровь происходит благодаря облегченной диффузии.

Вторично-активный транспорт глюкозы и галактозы через мембраны энтероцитов
Пассивный транспорт

В отличие от глюкозы и галактозы, фруктоза и другие моносахара всегда транспортируются белками-транспортерами, не зависящими от градиента натрия, т.е. облегченной диффузией . Так, на апикальной мембране энтероцитов находится транспортный белок ГлюТ-5 , через который фруктоза диффундирует в клетку.

Для глюкозы вторично-активный транспорт используется при ее низких концентрациях в кишечнике. Если концентрация глюкозы в просвете кишечника велика , то она также может транспортироваться в клетку путем облегченной диффузии при участии белка ГлюТ-5.

Скорость всасывания моносахаридов из просвета кишечника в эпителиоцит не одинакова. Так, если скорость всасывания глюкозы принять за 100%, то относительная скорость переноса галактозы составит 110%, фруктозы – 43%, маннозы – 19%.

Транспорт из крови через мембраны клеток

После выхода в кровь, оттекающую от кишечника, моносахариды движутся по сосудам воротной системы в печень, частично задерживаются в ней, частично выходят в большой круг кровообращения. Следующей их задачей стоит проникновение в клетки органов.

Из крови внутрь клеток глюкоза попадает при помощи облегченной диффузии по градиенту концентрации с участием белков-переносчиков (глюкозных транспортеров – "ГлюТ "). Всего выделяют 12 типов транспортеров глюкозы, отличающихся локализацией, сродством к глюкозе и способностью к регулированию.

Глюкозные транспортеры ГлюТ-1 имеются на мембранах всех клеток и ответственны за базовый транспорт глюкозы в клетки, требуемый для поддержания жизнеспособности.

Особенностями ГлюТ-2 является способность пропускать глюкозу в двух направлениях и низкое сродство к глюкозе. Переносчик представлен, в первую очередь, в гепатоцитах , которые после еды захватывают глюкозу, а в постабсорбтивный период и при голодании поставляют ее в кровь. Также присутствует этот транспортер в эпителии кишечника и почечных канальцев . Присутствуя на мембранах β-клеток островков Лангерганса, ГлюТ-2 переносит глюкозу внутрь при ее концентрации свыше 5,5 ммоль/л и благодаря этому генерируется сигнал для увеличения выработки инсулина .

Глют-3 обладает высоким сродством к глюкозе и представлен в нервной ткани . Поэтому нейроны способны поглощать глюкозу даже при низких ее концентрациях в крови.

В мышцах и жировой ткани находится ГлюТ-4 , только эти транспортеры являются чувствительными к влиянию инсулина . При действии инсулина на клетку они выходят на поверхность мембраны и переносят глюкозу внутрь. Указанные ткани получили название инсулинзависимых .

Некоторые ткани совершенно нечувствительны к действию инсулина, их называют инсулиннезависимыми . К ним относятся нервная ткань, стекловидное тело, хрусталик, сетчатка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты.

Конечными продуктами гидролиза углеводов в желудочно-кишечном тракте являются всего три вещества: глюкоза, фруктоза и галактоза. При этом на долю глюкозы приходится почти 80% общего количества этих моносахаридов. После всасывания в кишечнике большая часть фруктозы и практически вся галактоза преобразуются в печени в глюкозу. Вследствие этого в крови присутствуют только небольшие количества фруктозы и галактозы. В итоге процессов превращения глюкоза становится единственным представителем углеводов, транспортируемым во все клетки организма.

Соответствующие ферменты , необходимые клеткам печени для обеспечения процессов взаимного превращения моносахаридов - глюкозы, фруктозы и галактозы - показаны на рисунке. В результате этих реакций, когда печень высвобождает моносахариды обратно в кровь, окончательным продуктом, попадающим в кровь, становится глюкоза. Причина этого явления заключается в том, что клетки печени содержат большое количество глюкозофосфатазы, поэтому глюкозо-6-фосфат может расщепляться на глюкозу и фосфат. Затем глюкоза транспортируется через мембраны клеток обратно в кровь.



Хотелось бы еще раз подчеркнуть , что обычно более 95% всех моносахаридов, циркулирующих в крови, представлены конечным продуктом превращения - глюкозой.
Транспорт глюкозы через мембрану клетки . Прежде чем глюкоза будет использована клетками тканей, она должна транспортироваться через мембраны клеток в цитоплазму. Однако глюкоза не может свободно диффундировать через поры в клеточных мембранах, т.к. максимальная молекулярная масса частиц должна быть в среднем равна 100, в то время как молекулярная масса глюкозы составляет 180. Тем не менее глюкоза может относительно легко проникать внутрь клеток благодаря механизму облегченной диффузии. Основы этого механизма обсуждались в главе 4, напомним его основные моменты.

Видео: Клеточные включения

Насквозь прободая липидную мембрану клеток , белки-переносчики, количество которых в мембране достаточно велико, могут взаимодействовать с глюкозой. В такой связанной форме глюкоза может транспортироваться белком-переносчиком с одной стороны мембраны на другую и там отделяться- если с одной стороны мембраны концентрация глюкозы выше, чем с другой, то глюкоза будет транспортироваться туда, где ее концентрация ниже, а не в противоположном направлении. Транспорт глюкозы через клеточные мембраны в большинстве тканей резко отличается от транспорта, который наблюдается в желудочно-кишечном тракте или в эпителиоцитах канальцевого аппарата почек.

Видео: Medical

В обоих упомянутых случаях транспорт глюкозы опосредован сопряженным с механизмом активного транспортом натрия. Активный транспорт натрия обеспечивает энергией процесс всасывания глюкозы против градиента концентрации. Такой сопряженный с натрием активный механизм транспорта глюкозы встречается только в специализированных эпителиоцитах, приспособленных для активного процесса абсорбции глюкозы. В других клеточных мембранах глюкоза транспортируется только из областей с высокой концентрацией в область низких концентраций с помощью механизма облегченной диффузии, возможность которого создается особыми свойствами расположенного в мембране белка-переносчика глюкозы.

Транспорт глюкозы. Транспорт глюкозы может происходить по типу как облегченной диффузии, так и активного транспорта, причем в первом случае он протекает как унипорт, во втором - как симпорт. Глюкоза может транспортироваться в эритроциты путем облегченной диффузии. Константа Михаэлиса (К m) для транспорта глюкозы в эритроциты составляет приблизительно 1,5 ммоль/л (то есть при этой концентрации глюкозы около 50% имеющихся молекул пермеазы будет связано с молекулами глюкозы). Поскольку концентрация глюкозы в крови человека составляет 4-6 ммоль/л, поглощение ее эритроцитами происходит практически с максимальной скоростью. Специфичность пермеазы проявляется уже в том, что L-изомер почти не транспортируется в эритроциты в отличие от D-галактозы и D-маннозы, но для достижения полунасыщения транспортной системы требуются более высокие их концентрации. Оказавшись внутри клетки, глюкоза подвергается фосфорилированию и более не способна покинуть клетку. Пермеазу для глюкозы называют также D-гексозной пермеазой. Она представляет собой интегральный мембранный белок с молекулярной массой 45кД.

Глюкоза может также транспортироваться Na + -зависимой системой симпорта, обнаруженной в плазматических мембранах ряда тканей, в том числе в канальцах почек и эпителии кишечника. При этом одна молекула глюкозы переносится путем облегченной диффузии против градиента концентрации, а один ион Na - по градиенту концентрации. Вся система в конечном счете функционирует за счет насосной функции Na + /K + - АТФазы. Таким образом, симпорт является вторичной системой активного транспорта. Аминокислоты транспортируются аналогичным образом.

Ca2+ -насос

Ca 2+ -насос представляет собой систему активного транспорта типа Е 1 - Е 2 , состоящую из интегрального мембранного белка, который в процессе переноса Ca 2+ фосфорилируется по остатку аспартата. При гидролизе каждой молекулы АТФ происходит перенос двух ионов Ca 2+ . В эукариотических клетках Ca 2+ может связываться с кальцийсвязывающим белком, называемым кальмодулином , и весь комплекс связывается с Ca 2+ -насосом. К Ca 2+ -связывающим белкам отнсятся также тропонин С и парвальбумин.

Ионы Са, подобно ионам Na, активно выводятся из клеток Ca 2+ -АТФазой. Особенно большое количество белка кальциевого насоса содержат мембраны эндоплазматического ретикулума. Цепь химических реакций, ведущих к гидролизу АТФ и перебросу Ca 2+ , может быть записана в виде следующих уравнений:

2Са н + АТФ + Е 1 Са 2 - Е - Р + АДФ

Са 2 - Е - Р 2Са вн + PO 4 3- + Е 2

Где Са н - Ca 2+ , находящийся снаружи;

Са вн - Ca 2+ , находящийся внутри;

Е 1 и Е 2 - различные конформации фермента переносчика, переход которых из одной в другую связан с использованием энергии АТФ.

Система активного вывода Н + из цитоплазмы поддерживается двумя типами реакций: деятельностью электрон-транспортной цепи (редокс-цепи) и гидролизом АТФ. Оба - и редокс- и гидролитический Н + -насосы - находятся в мембранах, способных превращать световую или химическую энергию в энергию Н + (то есть плазматических мембранах прокариот, сопрягающих мембранах хлоропластов и митохондрий). В результате работы Н + АТФазы и/или редокс-цепи транслоцируются протоны, и на мембране возникает протондвижущая сила (Н +). Электрохимический градиент ионов водорода, как показывают исследования, может быть использован для сопряженного транспорта (вторичный активный транспорт) большого числа метаболитов - анионов, аминокислот, сахаров и т.д.

С активностью плазматической мембраны связаны обеспечивающие поглощение клеткой твердых и жидких веществ с большой молекулярной массой, - фагоцитоз и пиноцитоз (от герч. фагос - есть, пинос - пить, цитос - клетка). Клеточная мембрана образует карманы, или впячивания, которые втягивают вещества извне. Затем такие впячивания отшнуровываются и окружают мембраной капельку внешней среды (пиноцитоз) или твердые частицы (фагоцитоз). Пиноцитоз наблюдается в самых разнообразных клетках, особенно в тех органах, где происходят процессы всасывания.