Анализ данных по доказательной медицине. Статистические методы как основа доказательной медицины

Существует несколько определений доказательной медицины:

  • Это новая технология сбора, анализа, синтеза и использования медицинской информации, позволяющей принимать оптимальные клинические решения.
  • Это сознательное, четкое и беспристрастное использование лучших из имеющихся доказанных сведений для принятия решений о помощи конкретным больным.
  • Это усиление традиционных навыков клинициста в диагностике, лечении, профилактике и других областях путем систематического формулирования вопросов и применения математических оценок вероятности и риска.

Следует сразу сказать, что термины "отсутствие доказательств", "не доказано" или "имеется недостаточно доказательств" не равнозначны терминам "доказано отсутствие эффекта" или "доказано отсутствие преимуществ". Формулировка "не доказано" может свидетельствовать о недостаточной изученности проблемы и целесообразности организации более крупных исследований или использования других методик сбора информации и проведения статистического анализа. В то же время нельзя забывать, что обратная формулировка "доказано" может свидетельствовать о статистических манипуляциях в интересах фирм-производителей.

Доказательная медицина основана на методах проведения исследований, использующихся в эпидемиологии.

J.М. Last, формулируя современное определение эпидемиологии, акцентирует внимание на отдельных словах в данном определении. Так, под "изучением" следует понимать проведение обсервационных (наблюдательных) и экспериментальных исследований, проверку гипотез и анализ результатов.
"Распространение болезней и факторов..." подразумевает изучение частоты случаев болезни, смерти, факторов риска, выполнения больным рекомендаций врача, организации медицинской помощи и ее эффективности.
"Целевая группа" - группа с точным числом людей и определенными возрастно-половыми, социальными и другими признаками.

В настоящее время современное понятие эпидемиологии обозначается термином "клиническая эпидемиология". Этот термин произошел от названий двух "родительских" дисциплин: клинической медицины и эпидемиологии.
"Клиническая", потому что стремится ответить на клинические вопросы и рекомендовать клинические решения, основанные на самых надежных фактах.
"Эпидемиология", поскольку многие из ее методов разработаны эпидемиологами, и помощь конкретному больному здесь рассматривается в контексте большой популяции, к которой принадлежит больной.

Клиническая эпидемиология - наука, позволяющая осуществлять прогнозирование для каждого конкретного пациента на основании изучения клинического течения болезни в аналогичных случаях с использованием строгих научных методов изучения групп больных для обеспечения точности прогнозов.

Цель клинической эпидемиологии – разработка и применение таких методов клинического наблюдения, которые дают возможность делать справедливые заключения с гарантированной оценкой влияния систематических и случайных ошибок . В этом заключается важнейший подход к получению информации, необходимой врачам для принятия правильных решений.

Основополагающий метод в эпидемиологии - сравнение. Оно проводится путем математических вычислений таких величин, как отношение шансов, отношение рисков развития изучаемых событий.

Однако, прежде чем производить сравнение, следует понять, что с чем мы будем сравнивать (апельсины с апельсинами, а не апельсины с пароходами), т.е. сформулировать задачу (проблему), предшествующую началу любого исследования. Чаще всего проблема формулируется в виде вопроса, на который необходимо найти ответ.

Например, гипотетически, нам (то есть практикующему врачу) представлено лекарственное средство, которое, по уверению химиков его синтезировавших, должно лечить пятку. Фармакологическая фирма, поставившая производство препарата на поток, также уверяет в инструкции, что заявленный эффект действительно имеет место быть.

Что может сделать практикующий врач при принятии решения о применении препарата?

Ответ "поверить химикам/фармакологам на слово" исключаем как тривиальный и чреватый последствиями. Наша задача - доступными практикующему врачу средствами проверить заявленное действие препарата на пятку (подтвредить или опровергнуть и т.п.). Разумеется, мы не будем испытывать препарат на лабораторных мышах, добровольцах, и пр. Предполагается, что перед "запуском в серию" кто-то это уже более-менее добросовестно сделал.

Сообразно задаче мы начнем формирование массива данных, служащих для ее решения:

  1. Вначале произведем поиск информации.
  2. Далее из полученного массива данных исключим нерелевантные статьи (нерелевантные - несоответствующие нашим интересам).
  3. Оценим методологическое качество найденных исследований (насколько корректна методика сбора информации в исследовании, адекватны ли использованные методы статистического анализа и т. д.) и ранжируем в полученном массиве информацию по степени достоверности доказательств на основании существующих соглашений медицинской статистики и критериев достоверности, предложенных экспертами доказательной медицины.

    Согласно мнению Шведского совета по методологии оценки в здравоохранении, достоверность доказательств из различных источников не одинакова, и зависит от типа проведенного исследования. Тип проведенного исследования согласно международному соглашению Ванкуверской группы редакторов биомедицинских журналов (http://www.icmje.org/) обязательно должен быть тщательно описан; также должны быть указаны методы статистической обработки результатов клинических испытаний, продекларированы конфликты интересов, вклад автора в научный результат и возможность запроса у автора первичной информации по результатам исследования.

    Для обеспечения доказательности получаемых в исследованиях результатов должна быть выбрана "доказательная", т. е. адекватная задачам, методика исследования (дизайн исследования и методы статистического анализа) (табл. 1), которую мы будем учитывать при выборке информации из массива данных.

    Таблица 1. Выбор методики исследования в зависимости от цели исследования
    (описание терминов см Глоссарий методологических терминов)

    Задачи исследования Дизайн исследования Методы статистического анализа
    Оценка распространенности заболевания Одномоментное исследование всей группы (популяции) с использованием строгих критериев распознавания болезни Оценка доли, вычисление относительных показателей
    Оценка заболеваемости Когортное исследование Оценка доли, вычисление динамических рядов, относительных показателей
    Оценка факторов риска возникновения заболевания Когортные исследования. Исследования "случай - контроль" Корреляционный, регрессионный анализ, анализ выживаемости, оценка рисков, отношение шансов
    Оценка влияния на людей факторов окружающей среды, изучение причинно-следственных отношений в популяции Экологические исследования популяции Корреляционный, регрессионный анализ, анализ выживаемости, оценка рисков (добавочный риск, относительный риск, добавочный популяционный риск, добавочная доля популяционного риска), отношение шансов
    Привлечение внимания к необычному течению заболевания, результату лечения Описание случая, серии случаев Нет
    Описание результатов текущей клинической практики Обсервационное ("до и после") Среднее, стандартное отклонение, парный критерий Стьюдента (количественные данные).
    Критерий Мак-Нимара (качественные данные)
    Испытание нового метода лечения Клиническое испытание I фазы ("до и после") Среднее, стандартное отклонение, парный критерий Стьюдента.
    Критерий Мак-Нимара
    Сравнение двух методов лечения текущей клинической практики Контролируемое проспективное. Рандомизированное (открытое, слепое, двойное слепое). Контролируемое ретроспективное. Контролируемое проспективное + ретроспективное (смешанный дизайн) Критерий Стьюдента (количественные данные).
    Критерий χ 2 или z (качественные признаки).
    Критерий Каплана-Маерса (выживаемость)
    Сравнение нового и традиционного метода лечения Клинические испытания II-IV фаз (контролируемое проспективное или рандомизированное) Критерий Стьюдента.
    Критерий χ 2 .
    Критерий Каплана-Маерса

    Каждый тип исследований характеризуется определенными правилами сбора и анализа информации. Если эти правила соблюдены, любой вид исследования можно назвать качественным, независимо от того, будут ли они подтверждать или опровергать выдвинутую гипотезу. Более подробно статистические методы анализа, используемые для получения доказательств, представлены в книгах Петри А., Сэбина К. "Наглядная статистика в медицине" (М., 2003), Гланца С. "Медико-биологическая статистика" (М., 1999).

    Степень "доказательности" информации ранжируется следующим образом (по нисходящей):

    1. Рандомизированное контролируемое клиническое испытание;
    2. Нерандомизированное клиническое испытание с одновременным контролем;
    3. Нерандомизированное клиническое испытание с историческим контролем;
    4. Когортное исследование;
    5. "Случай-контроль";
    6. Перекрестное клиническое испытание;
    7. Результаты наблюдений.

    Результаты исследований, выполненных с использованием упрощенных методик или методик, несоответствующих задачам исследования, при некорректно выбранных критериях оценки могут привести к ложным выводам.

    Использование сложных методов оценки уменьшает вероятность ошибочного результата, но приводит к росту так называемых административных расходов (на сбор данных, создание баз данных, проведение методов статистического анализа).

    Так, например, в исследовании Е.Н. Фуфаева (2003) выявлено, что среди пациентов, имевших группу инвалидности до операции, сохранение инвалидности зарегистрировано у всех 100%. Среди пациентов, не имевших до кардиохирургической операции группы инвалидности, в 44% случаев после операции была определена группа инвалидности. На основании такого результата можно сделать ложные выводы о том, что кардиохирургические вмешательства ухудшают качество жизни пациентов. Однако при опросе оказалось, что удовлетворены результатами лечения 70,5% пациентов и 79,4% врачей, наблюдавших этих пациентов. Оформление же группы инвалидности обусловлено социальными причинами (льготы на получение лекарственных препаратов, оплату жилья и т. д.).

    Значимость социальной защиты в вопросах трудоспособности подтверждают результаты исследования, проведенного в США и не выявившего четкой взаимосвязи между клиническим состоянием (соматическим заболеванием) пациента и трудоспособностью.

    С целью сравнения показателей занятости после ТЛБА и АКШ было обследовано 409 пациентов (Hlatky М.А., 1998), из них перенесли ТЛБА 192 человек и 217 - АКШ. Было выявлено, что пациенты, которые перенесли ТЛБА, возвращались к работе на шесть недель быстрее пациентов, перенесших АКШ. Однако в долгосрочной перспективе влияние такого фактора, как вид операции, оказалось незначительным. В течение последующих четырех лет 157 пациентов (82%) из группы ТЛБА и 177 пациентов (82%) из группы АКШ вернулись к рабочей деятельности. Наиболее сильное влияние на показатель долгосрочной занятости оказали такие факторы, как возраст пациента к моменту начала исследования и степень покрытия медицинской страховкой оплаты медицинской помощи.

    Таким образом, медицинские факторы оказывали меньшее влияние на показатели занятости в долгосрочном плане, чем демографические и социальные. Полученные российскими и американскими исследователями результаты свидетельствуют о том, что часть традиционных и, казалось бы, простых методов оценки результатов лечения являются неприемлемыми для выбора приоритетов и принятия решений.

  4. После этого произведём систематический обзор - мета-анализ , оценим уровень достоверности результатов, полученных в ходе исследований и сравним: есть ли преимущества изучаемых методов диагностики, лечения, методов оплаты услуг, целевых программ над сравниваемыми или использовавшимися ранее.

    Если мы будем включать информацию с низкой степенью достоверности, то этот момент в нашем исследовании необходимо обязательно оговаривать отдельно.

    Центр доказательной медицины в Оксфорде, предлагает следующие критерии достоверности медицинской информации:

    • Высокая достоверность – информация основана на результатах нескольких независимых клинических испытаний с совпадением результатов, обобщенных в систематических обзорах.
    • Умеренная достоверность – информация основана на результатах по меньшей мере нескольких независимых, близких по целям клинических испытаний.
    • Ограниченная достоверность – информация основана на результатах одного клинического испытания.
    • Строгие научные доказательства отсутствуют (клинические испытания не проводились) – некое утверждение основано на мнении экспертов.
  5. И в заключение, оценив возможности использования результатов исследования в реальной практике, опубликуем результат:

    Это конечно шутка, но в каждой шутке есть доля правды.

    Обычно публикуются исследования, которые принесли положительные результаты, например, представляющие в выгодном свете новое лечение. Если рабочая гипотеза (задача, проблема) не подтверждается или не находит положительного решения, то исследователь, как правило, не публикует данные исследования. Это может быть опасным. Так, в 80-х годах ХХ века группа авторов исследовала антиаритмическое лекарственное средство. В группе пациентов, которые его получали, обнаружилась высокая летальность. Авторы расценили это как случайность, и, поскольку разработка этого антиаритмического лекарственного средства была прекращена, то публиковать материалы не стали. Позднее подобное антиаритмическое лекарственное средство - флекаинид - стало причиной гибели множества людей 1-2 .
    ________________________

    1. N Engl J Med. 1989 Aug 10;321(6):406-12, Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators.

Вышеприведенный алгоритм поиска и оценки доказательства был предложен D.L.Sackett с соавт (1997). Он может быть использован при любом исследовании, даже при оценке влияния фаз Луны на рост телеграфных столбов.

Д остаточно часто результаты исследований, в которых оценивается эффективность одного и того же лечебного или профилактического вмешательства или диагностического метода при одном и том же заболевании, различаются. В связи с этим возникает необходимость относительной оценки результатов разных исследований и интеграции их результатов с целью получения обобщающего вывода.К одной из самых популярных и быстро развивающихся методик системной интеграции результатов отдельных научных исследований сегодня относится методика мета-анализа.

Мета-анализ – это количественный анализ объединенных результатов эколого-эпидемиологических исследований по оценке воздействия одного и того же фактора окружающей среды. Он предусматривает количественную оценку степени согласованности или расхождения результатов, полученных в разных исследованиях.

Введение

В соответствии с концепцией доказательной медицины научно обоснованными признаются результаты лишь тех клинических исследований, которые проведены на основе принципов клинической эпидемиологии, позволяющих свести к минимуму как систематические ошибки, так и случайные ошибки (с помощью корректного статистического анализа полученных в исследовании данных) .

Международная эпидемиологическая ассоциация характеризует такой род исследования, как методику «объединения результатов различных научных трудов, складывающихся из качественного компонента (например, использование таких заранее определенных критериев включения в анализ, как полнота данных, отсутствие явных недостатков в организации исследования и т.д.) и количественного компонента (статистическая обработка имеющихся данных)» – методика мета-анализа .

Первый в науке мета-анализ был проведен Карлом Пирсоном (Karl Pearson) в 1904 году. Собрав вместе исследования он решил побороть проблему уменьшения мощности исследования в малых выборках. Анализируя результаты этих исследований, он получил, что мета-анализ может помочь получить более точные данные исследований .

Несмотря на то, что мета-анализ сейчас повсеместно применяется в области эпидемиологии и в медицинских исследованиях. Работы, в которых применялся мета-анализ не выходили свет до 1955 года. В 1970-х годов, более сложные аналитические методы были внедрены в учебных исследованиях, работами Гласса, Шмидта и Хантера (Gene V. Glass, Frank L. Schmidt and John E. Hunter .

Оксфордский Словарь Английского языка дает нам понять, что первое применения этого термина произошло в 1976 году Глассом. Основа этого метода была развита такими учеными как: Ражду, Хеджес, Купер, Олкин, Хантер, Коен, Чалмерс и Шмидт (Nambury S. Raju, Larry V. Hedges, Harris Cooper, Ingram Olkin, John E. Hunter, Jacob Cohen, Thomas C. Chalmers, and Frank L. Schmidt) .

Мета-анализ: количественный подход к исследованию

Цель мета-анализа - выявление, изучение и объяснение различий (вследствие наличия статистической неоднородности, или гетерогенности) в результатах исследований .

К несомненным преимуществам мета-анализа относятся возможность увеличения статистической мощности исследования, а, следовательно, точности оценки эффекта анализируемого вмешательства. Это позволяет более точно, чем при анализе каждого отдельно взятого небольшого клинического исследования, определить категории больных, для которых применимы полученные результаты .

Правильно выполненный мета-анализ предполагает проверку научной гипотезы, подробное и четкое изложение применявшихся при мета-анализe статистических методов, достаточно подробное изложение и обсуждение результатов анализа, а также вытекающих из него выводов. Подобный подход обеспечивает уменьшение вероятности случайных и систематических ошибок, позволяет говорить об объективности получаемых результатов .

Подходы к выполнению мета-анализа

Существуют два основных подхода к выполнению мета-анализа.

Первый из них заключается в статистическом повторном анализе отдельных исследований путем сбора первичных данных о включенных в оригинальные исследования наблюдениях. Очевидно, что проведение данной операции далеко не всегда возможно.

Второй (и основной) подход заключается в обобщении опубликованных результатов исследований, посвященных одной проблеме. Такой мета-анализ выполняется обычно в несколько этапов, среди которых важнейшими являются:

· выработка критериев включения оригинальных исследований в мета-анализ

· оценка гетерогенности (статистической неоднородности) результатов оригинальных исследований

· проведение собственно мета-анализа (получение обобщенной оценки величины эффекта)

· анализ чувствительности выводов

Необходимо отметить, что этап определения круга включаемых в мета-анализ исследований часто становится источником систематических ошибок мета-анализа. Качество мета-анализа существенно зависит от качества включенных в него исходных исследований и статей .

К основным проблемам при включении исследований в мета-анализ относятся такие, как различия исследований по критериям включения и исключения, структуре исследования, контролю качества.

Существует также смещение, связанное с преимущественным опубликованием положительных результатов исследования (исследования, в которых получены статистически значимые результаты, чаще публикуются, чем те, в которых такие результаты не получены).

Поскольку мета-анализ основан главным образом на опубликованных данных, следует обращать особое внимание на недостаточную репрезентативность отрицательных результатов в литературе. Включение в мета-анализ неопубликованных результатов также представляет значительную проблему, так как их качество неизвестно в связи с тем, что они не проходили рецензирование .

Основные методы

Выбор метода анализа определяется типом анализируемых данных (бинарные или непрерывные) и типом модели (фиксированных эффектов, случайных эффектов).

Бинарные данные обычно анализируются путем вычисления отношения шансов (ОШ), относительного риска (ОР) или разности рисков в сопоставляемых выборках. Все перечисленные показатели характеризуют эффект вмешательств. Представление бинарных данных в виде ОШ удобно использовать при статистическом анализе, но этот показатель достаточно трудно интерпретировать клинически. Непрерывными данными обычно являются диапазоны значений изучаемых признаков или нестандартизованная разница взвешенных средних в группах сравнения, если исходы оценивались во всех исследованиях одинаковым образом. Если же исходы оценивались по-разному (например, по разным шкалам), то используется стандартизованная разница средних (так называемая величина эффекта) в сравниваемых группах .

Одним из первых этапов мета-анализа является оценка гетерогенности (статистической неоднородности) результатов эффекта вмешательства в разных исследованиях .

Для оценки гетерогенности часто используют критерии χ2 с нулевой гипотезой о равном эффекте во всех исследованиях и с уровнем значимости 0,1 для повышения статистической мощности (чувствительности) теста .

Источниками гетерогенности результатов разных исследований принято считать дисперсию внутри исследований (обусловленную случайными отклонениями результатов разных исследовании от единого истинного фиксированного значения эффекта), а также дисперсию между исследованиями (обусловленную различиями между изучаемыми выборками по характеристикам больных, заболеваний, вмешательств, приводящими к несколько разным значениям эффекта - случайными эффектами).

Если предполагается, что дисперсия между исследованиями близка к нулю, то каждому из исследований приписывается вес, величина которого обратно пропорциональна дисперсии результата данного исследования.

Дисперсия внутри исследований в свою очередь определяется как

где μ — среднее внутри исследований .При нулевой дисперсии между исследованиями можно использовать модель фиксированных (постоянных) эффектов. В этом случае предполагается, что изучаемое вмешательство во всех исследованиях имеет одну и ту же эффективность, а выявляемые различия между исследованиями обусловлены только дисперсией внутри исследований. В этой модели пользуются методом Мантела-Ханзела.

Метод Мантела-Ханзела

В таблице представлены пропорции пациентов в Нью-Йорке и в Лондоне, которым был поставлен диагноз шизофрения.

— взвешенное среднее отдельных отношений шансов по группам. Критерий хи-квадрат Мантела-Ханзела проверки значимости общей меры связи основан на взвешенном среднем g разностей между пропорциями.

Статистика хи-квадрат Мантела-Ханзела задается выражением

с 1 степенью свободы.

Для того, чтобы статистика имела распределение хи-квадрат с 1 степенью свободы, каждая из четырех сумм ожидаемых частот

должна отличаться не менее чем на 5 как от своего минимума, так и от своего максимума.

Значит, чтобы с уверенностью пользоваться для статистики распределением хи-квадрат с 1 степенью свободы, вовсе не обязательно иметь большие маргинальные частоты. Число наблюдений в таблице может быть даже равно двум, как в случае связанных пар. Единственное, что нужно при этом – достаточно большое число таблиц, чтобы каждая сумма ожидаемых частот была велика.

Другие подходы к выполнению мета-анализа

Модель случайных эффектов предполагает, что эффективность изучаемого вмешательства в разных исследованиях может быть разной.

Данная модель учитывает дисперсию не только внутри одного исследования, но и между разными исследованиями. В этом случае суммируются дисперсии внутри исследований и дисперсия между исследованиями. Целью мета-анализа непрерывных данных обычно является представление точечных и интервальных (95% ДИ) оценок обобщенного эффекта вмешательства .

Существует также ряд других подходов к выполнению мета-анализа: байесовский мета-анализ, кумулятивный мета-анализ, многофакторный мета-анализ, мета-анализ выживаемости.

Байесовский мета-анализ позволяет рассчитать априорные вероятности эффективности вмешательства с учетом косвенных данных. Такой подход особенно эффективен при малом числе анализируемых исследований. Он обеспечивает более точную оценку эффективности вмешательства в модели случайных эффектов за счет объяснения дисперсии между разными исследованиями .

Кумулятивный мета-анализ - частный случай байесовского мета-анализа - пошаговая процедура включения результатов исследований в мета-анализ по одному в соответствии с каким-либо принципом (в хронологической последовательности, по мере убывания методологического качества исследования и т.д.). Он позволяет рассчитывать априорные и апостериорные вероятности в итерационном режиме по мере включения исследований в анализ .

Регрессионный мета-анализ (логистическая регрессия, регрессия взвешенных наименьших квадратов, модель Кокса и др.) используется при существенной гетерогенности результатов исследований. Он позволяет учесть влияние нескольких характеристик исследования (например, размера выборки, дозы препарата, способа его введения, характеристик больных и др.) на результаты испытаний вмешательства. Результаты регрессионного мета-анализа обычно представляют в виде коэффициента наклона с указанием ДИ .

Следует заметить, что мета-анализ может выполняться для обобщения результатов не только контролируемых испытаний медицинских вмешательств, но и когортных исследований (например, исследований факторов риска). Однако при этом следует учитывать высокую вероятность возникновения систематических ошибок .

Особый вид мета-анализа — обобщение оценок информативности диагностических методов , полученных в разных исследованиях. Цель такого мета-анализа - построение характеристической кривой взаимной зависимости чувствительности и специфичности тестов (ROC-кривой) с использованием взвешенной линейной регрессии .

Устойчивость. После получения обобщенной оценки величины эффекта возникает необходимость определить ее устойчивость. Для этого выполняется так называемый анализ чувствительности.

В зависимости от конкретной ситуации его можно проводить на основе нескольких различных методов, например:

· Включение и исключение из мета-анализа исследований, выполненных на низком методологическом уровне

· Изменение параметров данных, отбираемых из каждого анализируемого исследования, например, если в каких-либо исследованиях сообщается о клинических исходах в первые 2 нед. заболевания, а в других исследованиях - о клинических исходах в первые 3-4 нед. заболевания, то допустимо сравнение клинических исходов не только для каждого из этих периодов наблюдения, но и для суммарного периода наблюдения длительностью до 4 нед.

· Исключение из мета-анализа наиболее крупных исследований. Если величина эффекта того или иного анализируемого вмешательства при анализе чувствительности существенно не изменяется, то имеются основания полагать, что выводы первичного мета-анализа достаточно обоснованы.

Для качественной оценки наличия такой систематической ошибки мета-анализа обычно прибегают к построению воронкообразной диаграммы рассеяния результатов отдельных исследований в координатах (величина эффекта, размер выборки). При полном выявлении исследований эта диаграмма должна быть симметричной. Вместе с тем существуют и формальные методы оценки существующей асимметрии .

Результаты мета-анализа обычно представляются графически (точечные и интервальные оценки величин эффектов каждого из включенных в мета-анализ исследований; пример на рис.1) и в виде таблиц с соответствующими статистиками.

Заключение

В настоящее время мета-анализ представляет собой динамическую, многоаспектную систему методов, позволяющую теоретически и методологически убедительным способом объединять в одно целое данные различных научных исследований.

Мета-анализ по сравнению с первичным исследованием, требует относительно мало ресурсов, что позволяет не участвующим в исследованиях врачам, получить клинически доказанную информацию.

Главным условием использования мета-анализа является доступность необходимой информации о статистических критериях, используемых в обозреваемых исследованиях. Без сообщения в публикациях точных значений необходимой информации, перспективы применения мета-анализа будут весьма ограниченными. С увеличением доступности такой информации будет продолжаться реальное расширение мета-аналитических исследований и совершенствование его методологии.

Таким образом, тщательно выполненный мета-анализ может выявить области, требующие дальнейших исследований.

Список использованной литературы :

  1. Флетчер Р., Флетчер С., Вагнер Э. Клиническая эпидемиология.- М.: МедиаСфера, 1998.- 350с.
  2. Chalmers TC , Lau J. Meta-analytic stimulus for changes in clinical trials. Stat Methods Med Res. 1993 ; 2: 161 -172.
  3. Greenland S . Quantitative methods in the review of epidemiologic literature. Epidemiol Rev. 1987 ; 9: 1 -30.
  4. Stephen B. Thacker, MD, MSc. Meta-analysis. A Quantitative Approach to Research Integration. JAMA. 1988;259(11):1685-1689.
  5. Peipert JF , Phipps MG. Observational studies. Clin Obstet Gynecol. 1998 ; 41: 235 -244.
  6. Petitti D. Meta-Analysis, Decision Analysis, and Cost Effectiveness Analysis. New York, NY: Oxford University Press; 1994.
  7. Sipe TA , Curlette WL. A meta-synthesis of factors related to educational chievement. Int J Educ Res. 1997 ; 25: 583 -598.
  8. Shapiro S. Meta-analysis/shmeta-analysis. Am J Epidemiol. 1994;140:771-778.
  9. Schmidt LM, Gotzsche PC. Of mites and men: reference bias in narrative review articles: a systematic review. J Fam Pract. 2005;54(4):334–338.
  10. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Statist Med 2004;23:3105-24.
  11. Lumley T. Network meta-analysis for indirect treatment comparisons. Statist Med 2002;21:2313-24.
  12. Hedges LK, Olkin I. Statistical Methods for Meta-Analysis. San Diego, CA: Academic Press; 1986.
  13. Berry SM. Understanding and testing for heterogeneity across 2×2 tables: application to meta-analysis. Statist Med 1998;17:2353-69.
  14. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–5.
  15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
  16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–748.
  17. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–129.
  18. Efron B. Empirical Bayes methods for combining likelihoods. JASA 1996;91:538-50.
  19. Morris CN. Parametric empirical Bayes inference: theory and applications. JASA 1983;78:47-55.
  20. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559–1573.
  21. Hum Reprod. 1997 ; 12: 1851 -1863.
  22. Флейс Дж. Статистические методы для изучения таблиц долей и пропорций, Финансы и статистика, 1989.
  23. Schlesselman JJ . Risk of endometrial cancer in relation to use of combined oral contraceptives. Hum Reprod. 1997 ; 12: 1851 -1863.
  24. Hopewell S, McDonald S, Clarke M, Egger M. Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Syst Rev. 2007.

Талдау мете бұл дәлел дәрігерліктің аспабы

Турдалиева Б.С., Рахматуллаева Н.У., Тен В.Б., Раушанова А.М.,

Мусаева Б.А., Омарова Д.Б.

Асфендияров С.Ж. атындағы ҚазҰМУ

Дәлелді медицина орталығы

Алматы, Казахстан

Түійн Бiр ауру бойынша бағаланған зерттеу нәтижелері ылғи бiр емдiк, алдын алу немесе диагностикалық әдiстiң тиiмдiлiгi жиi жеткiлiктi өзгешеленедi.

Әртүрлi зерттеулердiң нәтижелерiнiң салыстырмалы бағасы және олардың жалпылауыш қорытындының нәтижелерi осыған байланысты пайда болатын қажеттiлiк кiрiгуiн мақсаты.

Ең әйгiлi және жеке ғылыми зерттеулердiң нәтижелерiнiң жүйелiк кiрiгуiнiң жылдам дамитын әдiстемелерiнiң бiрiне бүгiн мета — талдау әдiстеме жатады.

Мета — талдау — бұл экологтiң эпидемиологиялық зерттеулер бiрiккен нәтижелерiнiң сандық талдауы — қоршаған ортаның ылғи бiр факторының әсерiнiң бағасы. Ол келiсушiлiктiң дәрежесi немесе әртүрлi зерттеу алған нәтижелердiң айырмашылығының сандық бағасын ескередi.

A meta-analysis as a tool for evidence-based medicine

Turdalieva B.S., Rakhmatullayeva N.U., Ten V.B., Raushanova A.M.,

Musaeva B.A., Omarova D.B.
KazNMU оf S.D.Asfendiyarov, Almaty, Kazakhstan
Abstract Quite often, the results of studies that evaluated the effectiveness of the same therapeutic or preventive intervention or a diagnostic method for the same disease are different.

Часто оригинальные статьи о выполненных исследованиях могут быть более реальным источником ответа на узкие вопросы чем обзорные статьи и лекции. Считается что чтение журналов и статей необходимо ограничить теми которые действительно имеют отношение к повседневной практике или текущим научным исследованиям. Значительная часть публикаций представляющих результаты исследования нового вмешательства содержит непригодную для использования информацию. Встреча со знакомой и известной фамилией и уважаемым учреждением позволяют заранее...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Другие похожие работы, которые могут вас заинтересовать.вшм>

20915. Анализ рынка медицинских услуг 3.1 MB
Анализ теоретической информации о практике создания и применения ГЧП, характеристике и пользе данной модели для общества; анализ теоретического материала концепции бизнес-моделирования; определение экономических характеристик медицинской услуги; проведение анализа отрасли;
4601. АНАЛИЗ ДЕЯТЕЛЬНОСТИ ПОСТОВЫХ МЕДИЦИНСКИХ СЕСТЕР ТЕРАПЕВТИЧЕСКОГО ОТДЕЛЕНИЯ 60.63 KB
Практическая актуальность связана с тем, что дипломная работа может послужить автоматизации работы постовой сестры по ведению документации по учету медикаментов и движения больных; выдаче медицинских препаратов больному; формированию и распечатыванию направлений на исследования каждому пациенту; ведению температурного листа и т.д.
11969. Анализ экономической эффективности использования медицинских информационных систем 16.93 KB
Разработана модель и описаны алгоритмы анализа экономической эффективности медицинских информационных систем МИС. Разработан макет программного средства ПС анализа экономической эффективности применения МИС в лечебнопрофилактическом учреждении Программное средство анализа экономической эффективности использования медицинских информационных систем. Эксплуатационным назначением ПС является его использование экономистомэкспертом и руководителем ЛПУ при анализе экономической составляющей деятельности лечебнопрофилактического учреждения а...
18273. Анализ правового статуса Президента Республике Казахстан с позиций общепринятых критериев правового государства и принципа разделения властей 73.64 KB
Суть подхода Президента состояла в том что страна должна развиваться естественным образом эволюционно. Президентское правление - предусмотренное Конституцией государства это прекращение деятельности институтов самоуправления определенного регионального административного образования и осуществление управления последним посредством уполномоченных назначаемых главой государства - президентом и подотчетными ему лицами; предусмотренное Конституцией наделение главы государства - президента чрезвычайными полномочиями в масштабе всего...
13186. Проектирование информационной системы учета научных публикаций в среде Adobe Dreamweaver 2.29 MB
Автоматизация для любых организаций производится при помощи проектирования и последующего создания и развертывания единой корпоративной информационной системы – системы обработки информации также включающей в себя и соответствующие организационные ресурсы человеческие технические финансовые и т. Такая ситуация получила название лоскутной автоматизации и является довольно типичной для многих предприятий. Так как информационные системы предназначены для сбора хранения и обработки информации в основе любой из них лежит среда хранения и...
15989. Применение нанотехнологий в отраслях медицины 80.04 KB
Из истории следует что человечество всегда стремилось к прогрессу и с древних времён искало способы лечить болезни и продлевать жизнь. Можно сказать что развитие нанотехнологий в XXI веке изменит жизнь человечества больше чем освоение письменности паровой машины или электричества. Швейцарский физик Альберт Эйнштейн опубликовал работу в которой доказывал что размер молекулы сахара составляет примерно 1 нанометр. Американский футуролог Эрк Дрекслер пионер молекулярной нанотехнологии опубликовал...
6178. ГИГИЕНА – ОСНОВНАЯ ПРОФИЛАКТИЧЕСКАЯ ДИСЦИПЛИНА МЕДИЦИНЫ 409.78 KB
Термин «гигиена» происходит от греческого слова хигиейнос, что означает «приносящий здоровье» (Слайд №1). Согласно древнегреческой мифологии, у бога врачевания Асклепия (в древнеримских мифах – Эскулап) была дочь Гигиейя, помогавшая отцу в его делах.
5069. Роль правовых идей Авиценны в развитии медицины 31.86 KB
Ибн-Сина выступал за идеальное государство население которого должно состоять из правителей производителей и войска и каждый должен заниматься полезной работой. Особенно велики заслуги...
17864. Тенденции и Проблемы развития системы и рынка страховой медицины в США 75.24 KB
Понятие и классификация медицинского страхования: обязательное и добровольное медицинское страхование. Системы страхования здоровья в зарубежных странах. Анализ рынка медицинского страхования в США. Характеристика и особенности рынка медицинского страхования в США.
20590. Собственный капитал коммерческого банка с позиций его формирования 326.53 KB
Особую актуальность в проблеме управления собственным капиталом банка и вопросам его регулирования придает Базельский комитет по надзору который предпринял попытку коренного изменения системы оценки достаточности собственного капитала банка. Несмотря на незначительный удельный вес в совокупных пассивах банков собственный капитал остается основой надежности и устойчивости банка фундаментом деятельности банка и подушкой его безопасности. В последнее время вопросы банковского дела связанные с собственным капиталом банка привлекают особо...

Проблемы здоровья и экологии

12. American Society of Echocardiography minimum standards for the cardiac sonographer: a position paper / S. M. Bierig // J Am Soc Echocardiogr. - 2006. - Vol. 19. - P. 471-474.

13. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy / E. Abalos // The Cochrane Library Syst. Rev. - 2001. - Issue 4.

14. Antihypertensive drugs in pregnancy and fetal growth: evidence for «pharmacological programming» in the first trimester? / H. Bayliss // Hypertens Pregnancy. - 2002. - Vol. 21. - P. 161-174.

15. Antihypertensive therapy in the management of hypertension in pregnancy - a clinical double-blind study of pindolot / G. Bott-Kanner G. // Clin Exp Hypertension Pregnancy. - 1992. - Vol. 11. - P. 207-220.

16. Atenolol and fetal growth in pregnancies complicated by hypertension / C. Lydakis // Am. J. Hypertens. - 1999. - № 12. - P. 541-547.

17. Australasian Society for the Study of Hypertension in Pregnancy: The detection, investigation and management of hypertension in pregnancy: full consensus statement / M. A. Brown // Am. J. Gynecol. - 2000. - Vol. 40. - P. 139-155.

18. Butters, L. Atenolol in essential hypertension during pregnancy / L. Butters, S. Kennedy, P. C. Rubin // Br. Med. J. - 1990. - Vol. 301. - P. 587-589.

19. Collins, R. Pharmacological prevention and treatment of hypertensive disorders in pregnancy / R. Collins, H.C. S. Wallenburg // Effective Care in Pregnancy and Childbirth / eds. I. Chalmers, M Enkin, M.J.N.C. Keirse. - Oxford: Oxford University Press, 1989. - P. 512-533.

20. Effect of atenolol on birthweight / G. Y. Lip // Am. J. Cardiol. - 1997. - Vol. 79. - P. 1436-1438.

21. Effects of methyldopa on uteroplacental and fetal hemodynamics in pregnancy-induced hypertension / S. Montan // Am. J. Obstet. Gynecol. - 1993. - Vol. 168. - P. 152-156.

22. Fall in mean arterial pressure and fetal growth restriction in pregnancy hypertension: a meta-analysis / P. von Dadelszen // Lancet. - 2000. - Vol. 355. - P. 87-92.

23. Gallery, E.D.M. Antihypertensive treatment in pregnancy: analysis of different responses to oxprenolol and methyldopa /

E.D.M. Gallery, M. Ross, A. Z. Gyory // Br. Med. J. - 1985. - Vol. 291. - P. 563-566.

24. Gluckman, P. D. Maternal constraint of fetal growth and its consequences / P. D. Gluckman, M. A. Hanson // Semin Fetal Neonatal Med. - 2004. - Vol. 9, № 5. - P. 419-425.

25. Guidelines Committee. 2003 European Society of Hypertension - European Society of Cardiology guidelines for the management of arterial hypertension // J. Hypertens. - 2003. - Vol. 21, № 6. - P. 1011-1053.

26. Magee, L. A. Fortnightly review: management of hypertension in pregnancy / L. A. Magee, M. P. Ornstein, P. von Dadelszen // BMJ. - 1999. - Vol. 318, Issue 7194. - P. 1332-1336.

27. Magee, L. A. Oral beta-blockers for mild to moderate hypertension during pregnancy (Cochrane Review) / L. A. Magee, L. Duley // Cochrane Database Syst. Rev. - 2002. - Issue 1.

28. Preeclampsia - a state of sympathetic overactivity / H. P. Schobel // N. Engl. J. Med. - 1996. - Vol. 335. - P. 1480-1485.

29. Prevention of preeclampsia: a randomized trial of atenolol in hyperdynamic patients before onset of hypertension / T. R. Easterling // Obstet. Gynecol. - 1999. - Vol. 93. - P. 725-733.

30. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy / R. W. Gifford // Am. J. Obstet. Gynecol. - 2000. - Vol. 183, № 1. - P. 1-22.

31. The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension and of the European Society of Cardiology / G. Mancia // Eur. Heart J. - 2007. - Vol. 28. - P. 1462-1536.

32. The Task Force on the Management of Cardiovascular Diseases During Pregnancy on the European Society of Cardiology. Expert consensus document on management of cardiovascular diseases during pregnancy // Eur. Heart. J. - 2003. - Vol. 24. - P. 761-781.

33. Use of antihypertensive medications in pregnancy and the risk of adverse perinatal outcomes: McMaster outcome study of hypertension in pregnancy 2 (MOS HIP 2) / J.G. Ray // BMC Pregnancy Childbirth. - 2001. - № 1. - P.6.

34. World Health Organization - International Society of Hypertension 1999 Guidelines for the Management of Hypertension // High Blood Press. - 1999. - Vol. 8. - P. 1^3.

Поступила 29.10.2008

ИСПОЛЬЗОВАНИЕ ДАННЫХ ДОКАЗАТЕЛЬНОЙ МЕДИЦИНЫ В КЛИНИЧЕСКОЙ ПРАКТИКЕ (сообщение 3 - ДИАГНОСТИЧЕСКИЕ ИССЛЕДОВАНИЯ)

А. А. Литвин2, А. Л. Калинин1, Н. М. Тризна3

1Гомельский государственный медицинский университет 2Гомельская областная клиническая больница 3Белорусский государственный медицинский университет, г. Минск

Важным аспектом доказательной медицины является полнота и точность представления данных. Целью статьи является краткий обзор принципов доказательной медицины в исследованиях, посвященных точности диагностических тестов.

Диагностические тесты используются в медицине, чтобы установить диагноз, степень тяжести и особенности течения заболевания. Диагностическая информация получается из множества источников, включая субъективные, объективные, специальные методы исследования. Эта статья основывается на описании данных об измерении качества исследований, преимуществ различных способов итоговой статистики c помощью метода логистической регрессии и ROC-анализа.

Ключевые слова: доказательная медицина, диагностические тесты, логистическая регрессия, ROC-анализ.

USE OF DATA OF EVIDENCE BASED MEDICINE IN CLINICAL PRACTICE (report 3 - DIAGNOSTIC TESTS)

A. A. Litvin2, A. L. Kalinin1, N. M. Trizna3

1Gomel State Medical University 2Gomel Regional Clinical Hospital 3Belarus State Medical University, Minsk

A prominent aspect of evidence based medicine is completeness and accuracy of data presentation. Article purpose is the short review of principles of evidence based medicine in the researches devoted to accuracy of diagnostic tests.

Проблемы здоровья и экологии

Diagnostic tests are used in medicine to screen for diagnose, grade, and monitor the progression of disease. Diagnostic information is obtained from a multitude of sources, including sings, symptoms and special investigations. This article concentrates on the dimensions of study quality and the advantages of different summary statistics with logistic regression and ROC-analysis.

Key words: evidence based medicine, diagnostic tests, logistic regression, ROC-analysis.

Когда врач на основании данных анамнеза и обследования пациента выносит суждение о диагнозе, он редко бывает в нем полностью уверен. В связи с этим более целесообразно говорить о диагнозе с точки зрения его вероятности. Все еще очень часто эта вероятность выражается не в форме процентов, а с помощью таких выражений, как «почти всегда», «обычно», «иногда», «редко». Поскольку разные люди вкладывают различную степень вероятности в одни и те же термины, это ведет к возникновению недопонимания между врачами или между врачом и пациентом . Врачам следует как можно более точно давать свои заключения и, если это осуществимо, использовать для выражения вероятности количественные методы .

Хотя наличие таких количественных показателей было бы очень желательно, они обычно отсутствуют в клинической практике. Даже опытные клиницисты часто не в состоянии точно определить вероятность развития тех или иных изменений. Имеется тенденция к гипердиагностике относительно редких заболеваний. Особенно трудно бывает количественно оценить вероятность, которая может быть очень высокой или очень низкой .

Поскольку установление достоверных диагностических критериев является краеугольным камнем клинического мышления, для разработки статистических подходов к улучшению диагностического предвидения используется накопленный клинический опыт, который в идеале должен быть представлен в форме компьютерных банков данных . В подобных исследованиях обычно идентифицируют фак-

торы, находящиеся в корреляции с тем или иным диагнозом. Затем эти данные могут быть включены в многофакторный анализ, что позволяет определить, какие из них являются достоверными независимыми предикторами диагноза. Некоторые виды анализа позволяют идентифицировать важные факторы предсказания диагноза и затем определить их «вес», который может быть при дальнейшем математическом расчете трансформирован в вероятность. С другой стороны, анализ позволяет выделить ограниченное число категорий пациентов, каждая из которых имеет собственную вероятность наличия того или иного диагноза .

Эти количественные подходы к постановке диагноза, которые часто называют «правилами предсказания», особенно полезны, если они представлены в удобном для использования виде и если их ценность была широко изучена на достаточном числе и спектре пациентов. Чтобы такие правила предсказания могли оказать реальную помощь клиницистам, они должны быть разработаны на представительных группах больных с использованием доступных воспроизводимых тестов для того, чтобы полученные результаты могли быть применены в медицинской практике повсеместно .

В связи с этим чрезвычайно важно знать несколько наиболее часто используемых при анализе результатов исследований и в эпидемиологии терминов, включая распространенность, чувствительность, специфичность, положительную предсказательную ценность и отрицательную предсказательную ценность (таблица 1) .

Таблица 1 - Систематические термины, наиболее часто используемые в диагностических исследованиях

имеется отсутствует

Положительные а (истинноположительные) б (ложноположительные)

Отрицательные в (ложноотрицательные) г (истинноотрицательные)

Распространение (априорная вероятность) = (а+в) / (а+б+в+г) = число больных / общее число обследованных

Чувствительность (sensitivity) = а / (а+в) = число истинноположительных результатов / общее число больных

Специфичность (specificity) = г / (б+г) = число истинноотрицательных результатов / число пациентов без данного заболевания

Частота ложноотрицательных результатов = в / (а+в) = число ложноотрицательных результатов / общее число больных

Частота ложноположительных результатов = б / (б+г) = число ложноположительных результатов / число пациентов без данного заболевания

Проблемы здоровья и экологии

Окончание таблицы 1

Результаты теста Патологическое состояние

имеется отсутствует

Положительная предсказательная ценность (positive predictive value) = а / (а+б) = число истинноположительных результатов / число всех положительных результатов

Отрицательная предсказательная ценность (negative predictive value) = г / (в+г) = число истинноотрицательных результатов / число всех отрицательных результатов

Общая точность (accuracy) = (а+г) / (а+б+в+г) = число истинноположительных и истинноотрицательных результатов / число всех результатов

Отношение правдоподобия положительного результата (likelihood ratio of a positive test) - = чувствительность / (1 - специфичность)

Отношение правдоподобия отрицательного результата теста (likelihood ratio of a negative test) - = 1 - чувствительность / специфичность

Вопросы, на которые отвечают данные характеристики диагностического теста :

1) чувствительность - насколько хорош тест для выявления пациентов, имеющих данное состояние?

2) специфичность - насколько хорош тест для правильного исключения пациентов, не имеющих данного состояния?

3) прогностическая ценность положительного результата теста - если у человека тест положительный, какова вероятность того, что у него действительно есть данное заболевание?

4) прогностическая ценность отрицательного результата теста - если у человека тест отрицательный, какова вероятность того, что у него действительно нет данного заболевания?

5) индекс точности - какая часть всех тестов дала правильные результаты (т. е. истинноположительные и истинноотрицательные результаты по отношению ко всем)?

6) отношение правдоподобия положительного результата (likelihood ratio of a positive test) - насколько более вероятно то, что тест будет положительным у человека с заболеванием по сравнению со здоровым?

Поскольку только меньшая часть из правил предсказания соответствует строгим критериям, таким как число и спектр обследованных, а также проспективное подтверждение результатов, большинство из них непригодно для повседневного клинического использования. Более того, многие правила предсказания не могут оценить вероятность каждого диагноза или исхода, с которыми сталкивается клиницист. Тест, обладающий определенной чувствительностью и специфичностью, имеет различную положительную и отрицательную предсказательную ценность, если применяется в группах с различной распространенностью заболевания. Чувствительность и специфичность какого-либо теста не зависят от распростра-

ненности заболевания (или процента больных, у которых имеется заболевание, от всех обследованных пациентов), они зависят от состава группы пациентов, среди которых этот тест был использован .

В некоторых ситуациях неточное знание чувствительности и специфичности теста в изучаемой группе пациентов может ограничить его клиническую ценность. Поскольку врач редко знает (или может знать) популяцию пациентов, на которой назначаемый им тест был стандартизован, получаемые результаты обладают информацией намного менее достоверной, чем принято думать. Более того, для любого диагностического теста увеличение чувствительности будет сопровождаться снижением специфичности .

Модель с высокой чувствительностью часто дает истинный результат при наличии положительного исхода (обнаруживает положительные примеры). Наоборот, модель с высокой специфичностью чаще дает истинный результат при наличии отрицательного исхода (обнаруживает отрицательные примеры). Если рассуждать в терминах медицины - задачи диагностики заболевания, где модель классификации пациентов на больных и здоровых называется диагностическим тестом, то получится следующее: 1) чувствительный диагностический тест проявляется в гипердиагностике - максимальном предотвращении пропуска больных; 2) специфичный диагностический тест диагностирует только доподлинно больных . Поскольку нельзя ожидать, что какая-либо величина или производный показатель в отдельности могли бы обладать одновременно превосходной чувствительностью и специфичностью, часто бывает необходимо определить, какой показатель является наиболее ценным и необходимым для принятия решения. Графическое изображение, получившее название ROC-кривой

Проблемы здоровья и экологии

(рисунок 1), связывающей обсуждаемые характеристики теста, показывает неизбежность выбора между стремлением к высокой чувствительности и специфичности. Подобное графическое изображение свидетельствует о том, что результаты тестов могут быть определены как нормальные или патологические в зависимости от того, учитыва-

ется заболевание, если тест обладает высокой специфичностью, или исключается, если тест обладает высокой чувствительностью. Разные тесты могут обладать различной чувствительностью и специфичностью. Чувствительность и специфичность более достоверных тестов выше, чем недостоверных тестов .

Рисунок 1 - Графическое изображение внутреннего несоответствия чувствительности и специфичности

ROC-кривая (Receiver Operator Characteristic) - кривая, которая наиболее часто используется для представления результатов бинарной классификации в машинном обучении . Название пришло из систем обработки сигналов. Поскольку классов два, один из них называется классом с положительными исходами, второй - с отрицательными исходами. ROC-кривая показывает зависимость количества верно классифицированных положительных примеров от количества неверно классифицированных отрицательных примеров. В терминологии ROC-анализа первые называются истинноположительным, вторые - ложноотрицательным множеством. При этом предполагается, что у классификатора имеется некоторый параметр, варьируя который мы будем получать ту или иную разбивку на два класса. Этот параметр часто называют порогом, или точкой отсечения (cut-off value) .

ROC-кривая получается следующим образом. Для каждого значения порога отсечения, которое меняется от 0 до 1 с шагом, например, 0,01, рассчитываются значения чувствительности Se и специфичности Sp. В качестве альтернативы порогом может являться каждое последующее значение примера в выборке. Строится график зависимости: по оси Y откладывается чувствительность Se, по оси X - 100% - Sp (сто процентов минус специфичность) . В результате вырисовывается некая кривая (рисунок 1). График часто дополняют прямой y = х.

Для идеального классификатора график ROC-кривой проходит через верхний левый

угол, где доля истинноположительных случаев составляет 100 %, или 1,0 (идеальная чувствительность), а доля ложноположительных примеров равна нулю. Поэтому чем ближе кривая к верхнему левому углу, тем выше предсказательная способность модели. Наоборот, чем меньше изгиб кривой и чем ближе она расположена к диагональной прямой, тем менее эффективна модель. Диагональная линия соответствует «бесполезному» классификатору, т. е. полной неразличимости двух классов .

При визуальной оценке ROC-кривых расположение их относительно друг друга указывает на их сравнительную эффективность. Кривая, расположенная выше и левее, свидетельствует о большей предсказательной способности модели. Так, на рисунке 2 две ROC-кривые совмещены на одном графике. Видно, что модель A лучше.

Визуальное сравнение кривых ROC не всегда позволяет выявить наиболее эффективную модель. Своеобразным методом сравнения ROC-кривых является оценка площади под кривыми. Теоретически она изменяется от 0 до 1,0, но поскольку модель всегда характеризуются кривой, расположенной выше положительной диагонали, то обычно говорят об изменениях от 0,5 («бесполезный» классификатор) до 1,0 («идеальная» модель). Эта оценка может быть получена непосредственно вычислением площади под многогранником, ограниченным справа и снизу осями координат и слева вверху - экспериментально полученными точками (рисунок 3). Численный показатель площади под кривой называется AUC (Area Under Curve).

Проблемы здоровья и экологии

Рисунок 2 - Сравнение ROC-кривых

Рисунок 3 - Площадь под ROC-кривой

С большими допущениями можно считать, что чем больше показатель AUC, тем лучшей прогностической силой обладает модель. Однако следует знать, что показатель AUC предназначен скорее для сравнительного анализа нескольких моделей; AUC не содержит ника-

кой информации о чувствительности и специфичности модели .

В литературе иногда приводится следующая экспертная шкала для значений AUC, по которой можно судить о качестве модели (таблица 2) .

Таблица 2 -Экспертная шкала значений AUC

Интервал AUC Качество модели

0,9-1,0 Отличное

0,8-0,9 Очень хорошее

0,7-0,8 Хорошее

0,6-0,7 Среднее

0,5-0,6 Неудовлетворительное

Идеальная модель обладает 100% чувствительностью и специфичностью. Однако на практике добиться этого невозможно, более того, невозможно одновременно повысить и чувствительность, и специфичность модели.

Компромисс находится с помощью порога отсечения, т.к. пороговое значение влияет на соотношение Se и Sp. Можно говорить о задаче нахождения оптимального порога отсечения (optimal cut-off value) (рисунок 4) .

Рисунок 4 - «Точка баланса» между чувствительностью и специфичностью

Проблемы здоровья и экологии

Порог отсечения нужен для того, чтобы применять модель на практике: относить новые примеры к одному из двух классов. Для определения оптимального порога нужно задать критерий его определения, т.к. в разных задачах присутствует своя оптимальная стратегия. Критериями выбора порога отсечения могут выступать: 1) требование минимальной величины чувствительности (специфичности) модели. Например, нужно обеспечить чувствительность теста не менее 80 %. В этом случае оптимальным порогом будет максимальная специфичность (чувствительность), которая достигается при 80 % (или значение, близкое к

нему «справа» из-за дискретности ряда) чувствительности (специфичности) .

Приведенные теоретические данные лучше воспринимаются на примерах из клинической практики. Первый пример, на котором мы остановимся, будет диагностика инфицированного панкреонекроза (набор данных взят из базы данных ). Обучающая выборка содержит 391 запись с выделением 12 независимых переменных в следующем формате (таблица 3). Зависимая переменная (1 - наличие заболевания, 0 - отсутствие). Распределение зависимой переменной следующее: 205 случаев - отсутствие заболевания, 186 - его наличие.

Таблица 3 - Независимые переменные для диагностики инфицированного панкреонекроза, коэффициенты логистической регрессии (пример)

Независимые переменные Формат данных Коэффициент, %

Число дней от начала заболевания > 14 < 14 2,54

Число дней, проведенных больным на лечении в ОАРИТ > 7 < 7 2,87

Частота сердечных сокращений числовое значение 1,76

Частота дыхания числовое значение 1,42

Температура тела числовое значение 1,47

Лейкоциты крови числовое значение 1,33

Лейкоцитарный индекс интоксикации числовое значение 1,76

Мочевина крови числовое значение 1,23

Общий белок плазмы крови числовое значение 1,43

Адекватная антибиотикопрофилактика при установлении диагноза тяжелого острого панкреатита да/нет -1,20

Выполнение миниинвазивных лечебно-профилактических операций да/нет -1,38

Наличие отрицательной динамики да/нет 2,37

На рисунке 4 изображена полученная ROC- можно охарактеризовать как очень хорошую, кривая. Предсказательную способность модели AUC = 0,839.

Рисунок 4 - ROC-кривая диагностической модели инфицированного панкреонекроза

Проблемы здоровья и экологии

Рассмотрим фрагмент массива точек «чув- ня внутрибрюшного давления у больных тяже-

ствительшсть-специфичшсть» на примере уров- лым острым панкреатитом .

Таблица 4 - Чувствительность и специфичность различных уровней ВБД для прогнозирования развития ИПН (пример)

ВБД, мм рт. ст. Чувствительность, % Специфичность, % Se + Sp Se - Sp

13,5 25 100 125 75

14,5 30 95 125 65

15,5 40 95 135 55

16,5 65 95 160 30

17,5 80 90 170 10

18,5 80 80 160 0

19,5 80 70 150 10

20,5 85 65 150 20

21,5 95 55 150 40

23,0 100 45 145 55

24,5 100 40 140 60

25,5 100 25 125 75

Как видно из таблицы, оптимальным пороговым уровнем ВБД у больных острым деструктивным панкреатитом, обеспечивающим максимум чувствительности и специфичности теста (или минимум ошибок I и II рода), является 17,5 ± 2,3 (M ± SD) мм рт.ст., при котором отмечается 80 % чувствительность и 90 % специфичность метода для определения вероятности развития инфекционных осложнений пан-креонекроза. Чувствительность равна 80 % - это означает, что у 80 % пациентов с инфицированным панкреонекрозом диагностический тест положителен. Специфичность равна 90 %, следовательно, у 90 % пациентов, у которых нет инфицированного панкреонекроза, результаты теста являются отрицательными. Точкой баланса, в которой чувствительность и специфичность примерно совпадают - 80 %, является 18,5. В целом положительная прогностическая ценность измерения ВБД составила 86 %, отрицательная прогностическая ценность - 88 %.

Проведение логистической регрессии и ROC-анализа возможно с использованием статистических пакетов . Однако «Statistica» 6 и 7 (http://www.statistica.com) проводят данный анализ только с использованием блока «Искусственные нейронные сети» . В SPSS (http://www. spss.com) (начиная с 13 версии) ROC-анализ дан только в графическом модуле и анализируется одна ROC-кривая. В SPSS выводится значение площади под кривой (AUC), уровень значимости и значение чувствительности и специфичности в каждой точке измерения. Оптимальную точку (optimal cut-off) необходимо находить самим из таблицы чувствительности и 1-специфичность . Программа MedCalc проведет сравнение нескольких ROC-кривых, в таблице пометит значение переменной, при

которой соотношение чувствительности и специфичности оптимально (optimal cut-off). В SAS (http://www.sas.com) также, как и R-Commander есть модуль сравнения кривых и нахождения точек, AUC. Логистическая регрессия и ROC-анализ есть в бесплатной программе WINPEPI (PEPI-for-Windows) (http://www.brixtonhealth. com/ winpepi.zip) .

Заключение

Искусство диагностики постоянно совершенствуется. Ежедневно появляются новые диагностические тесты, а технология существующих методов изменяется. Переоценка точности соответствующих исследований, в частности, в результате возникновения систематической ошибки, связанной с недобросовестной практикой исследований и публикаций, может привести к преждевременному внедрению диагностических тестов и принятию неправильных клинических решений. Тщательная оценка диагностических тестов до их широкого применения не только снижает риск развития неблагоприятных исходов, обусловленных ошибочными представлениями об информативности метода, но также может ограничить расходование ресурсов здравоохранения за счет отказа от ненужных обследований. Неотъемлемой частью оценки диагностических тестов являются исследования, посвященные точности диагностических тестов, самыми информативными из которых являются метод логистической регрессии и ROC-анализ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Гринхальх, Т. Основы доказательной медицины / Т. Грин-хальх; пер. с англ. - М.: ГЭОТАР-Медиа, 2006. - 240 с.

Проблемы здоровья и экологии

3. Власов, В. В. Введение в доказательную медицину / В. В. Власов. - М. МедиаСфера, 2001. - 392 с.

4. Флетчер, Р. Клиническая эпидемиология. Основы доказательной медицины / Р. Флетчер, С. Флетчер, Э. Вагнер; пер. с англ. - М.: МедиаСфера, 1998. - 352 с.

5. Банержи, А. Медицинская статистика понятным языком: вводный курс / А. Бенержи; пер с англ. - М.: Практическая медицина, 2007. - 287 с.

6. Жижин, К. С. Медицинская статистика: учеб. пособие. - Ростов н/Д.: Феникс, 2007. - 160 с.

7. Deeks, J. J. Systematic reviews of evaluations of diagnostic and screening tests / J. J. Deeks // BMJ. - 2001. - Vol. 323. - P. 157-162.

8. Guidelines for meta-analyses evaluating diagnostic tests / L. Irwig // Ann. Intern. Med. - 1994. - Vol. 120. - P. 667-676.

9. Systematic reviews and meta-analysis for the surgeon scientist /

S. S. Mahid // Br. J. Surg. - 2006. - Vol. 93. - P. 1315-1324.

10. Meta-analytical methods for diagnostic test accuracy / L. Irwig // J. Clin. Epidemiol. - 1995. - Vol. 48. - P. 119-130.

11. Users" guides to the medical literature. How to use an article about a diagnostic test. A. Are the results of the study valid? / R. Jaeschke // JAMA. - 1994. - Vol. 271. - P. 389-391.

12. Use of methodological standards in diagnostic test research: getting better but still not good / M. C. Read // JAMA. - 1995. - Vol. 274. - P. 645-651.

13. StAR: a simple tool for the statistical comparison of ROC curves / I. E. Vergara // BMC Bioinformatics. - 2008. - Vol. 9. - P. 265-270.

14. A comparison of parametric and nonparametric approaches to ROC-analysis of quantitative diagnostic tests / K. O. Hajian-Tilaki // Medical Decision Making. - 1997. - Vol. 17, N. 1. - P. 94-102.

15. Receiver operator characteristic (ROC) curves and nonnormal data: An empirical study / M.J. Goddard // Statistics in Medicine. - 1989. - Vol. 9, N. 3. - P. 325-337.

16. Возможности прогнозирования инфицированного пан-креонекроза / А. А. Литвин [и др.] // Проблемы здоровья и экологии. - 2007. - Т. 12, № 2. - С. 7-14.

17. Метод мониторинга внутрибрюшного давления у больных тяжелым острым панкреатитом / А. А. Литвин [и др.] // Проблемы здоровья и экологии. - 2008. - Т. 16, № 2. - С. 80-85.

18. Comparison of eight computer programs for receiver-operating characteristic analysis / C. Stephan // Clin. Chem. - 2003. - Vol. 49, N. 3. - P. 433-439.

19. Zhu, X. A short preview of free statistical software packages for teaching statistics to industrial technology majors / X. Zxu // J. Ind. Technology. - 2005. - Vol. 21, N. 2. - P. 10-20.

20. Боровиков, В. STATISTICA: искусство анализа данных на компьютере. Для профессионалов / В. Боровиков. - СПб.: Питер, 2001. - 656 с.

21. Бююлъ, А. SPSS: искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей / А. Бююль. - СПб.: ДиаСофтЮП, 2002. - 608 с.

22. Abramson, J. H. WINPEPI (PEPI-for-Windows): computer programs for epidemiologists / J. H. Abramson, // Epidemiologic Perspectives & Innovations. - 2004. - Vol. 1, N. 6. - P. 1-10.

Поступила 24.10.2008

УДК 616.1:616-009.12:616-005.8:616.831-005.1

НЕКОТОРЫЕ ПОКАЗАТЕЛИ МИКРОЦИРКУЛЯЦИИ И ПОВРЕЖДЕНИЯ ЭНДОТЕЛИЯ В ОЦЕНКЕ РИСКА РАЗВИТИЯ ИНСУЛЬТОВ, ИНФАРКТОВ МИОКАРДА, ЛЕТАЛЬНЫХ ИСХОДОВ У БОЛЬНЫХ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ

В. И. Козловский, А. В. Акулёнок Витебский государственный медицинский университет

Цель исследования: выделение факторов, ассоциированных с повышением риска развития инфарктов миокарда, мозговых инсультов, летальных исходов у больных артериальной гипертензией (АГ) II степени.

Материал и методы: в исследование были включены 220 больных АГ II степени (средний возраст 57 ± 8,4 лет), которые госпитализировались в связи с гипертоническим кризом, и 30 человек без АГ (средний возраст

53,7 ± 9 лет).

Результаты: за 3,3 ± 1 лет наблюдения в группе больных АГ II степени зафиксировано 29 инсультов, 18 инфарктов миокарда, 26 летальных исходов. Повышение числа циркулирующих эндотелиальных клеток (ЦЭК), агрегации лейкоцитов, тромбоцитов, адгезии лейкоцитов у больных АГ было ассоциировано с повышением риска развития инфарктов миокарда, инсультов и летальных исходов.

Заключение: показатели числа ЦЭК, агрегации тромбоцитов и лейкоцитов, адгезии лейкоцитов можно использовать для выделения групп гипертензивных больных повышенного риска развития инфарктов миокарда, инсультов и летальных исходов, а также в создании комплексных моделей прогноза.

Ключевые слова: артериальная гипертензия, риск, инфаркт миокарда, инсульт, летальный исход, циркулирующие эндотелиоциты.

SOME FINDINGS OF MICROCIRCULATION AND ENDOTHELIAL DAMAGE IN ESTIMATION OF RISK FOR STROKES, MYOCARDIAL INFARCTIONS, LETHAL OUTCOMES IN HYPERTENSIVE PATIENTS

V. I. ^zlovsky, A. V. Akulionak Vitebsk Statel Medical University

Objective: to determine factors, associated with increased risk for development of strokes, myocardial infarctions, lethal outcomes in patients with arterial hypertension (AH) II degree.

Methods: 220 patients with AH II degree (mean age 57 ± 8,4 years), complicated by hypertensive crisis, and 30 persons without AH (mean age 53,7 ± 9 years) were followed-up for 3,3±1 years.

Results: elevation of number of circulating endothelial cells (CEC), aggregation of platelets and leukocytes, adhesion of leukocytes in hypertensive patients were associated with increased risk for development of strokes, myocardial infarctions, lethal outcomes.