Анатомия и физиология пищеварительной системы. Физиология пищеварительной системы Понятие о процессе пищеварения

Система пищеварения – сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям существования.

Система пищеварения включает:

1) весь желудочно-кишечный тракт;

2) все пищеварительные железы;

3) механизмы регуляции.

Желудочно-кишечный тракт начинается с ротовой полости, продолжается пищеводом, желудком и заканчивается кишечником. Железы расположены на протяжении всей пищеварительной трубки и выделяют в просвет органов секреты.

Все функции делятся на пищеварительные и непищеварительные. К пищеварительным относятся:

1) секреторная активность пищеварительных желез;

2) моторная деятельность желудочно-кишечного тракта (осуществляется благодаря наличию гладкомышечных клеток и скелетных мышц, обеспечивающих механическую обработку и продвижение пищи);

3) всасывательная функция (поступление конечных продуктов в кровь и лимфу).

Непищеварительные функции:

1) эндокринная;

2) экскреторная;

3) защитная;

4) деятельность микрофлоры.

Эндокринная функция осуществляется за счет наличия в составе органов желудочно-кишечного тракта отдельных клеток, вырабатывающих гормоны – инкреты.

Экскреторная роль заключается в выделении непереваренных продуктов пищи, образующихся в ходе процессов метаболизма.

Защитная деятельность обусловлена наличием неспецифической резистентности организма, которая обеспечивается благодаря присутствию макрофагов и лизоцима секретов, а также за счет приобретенного иммунитета. Большую роль играет и лимфоидная ткань (миндалины глоточного кольца Пирогова, пейеровы бляшки или солитарные фолликулы тонкого кишечника, червеобразного отростка, отдельные плазматические клетки желудка), которая выделяет в просвет желудочно-кишечного тракта лимфоциты и иммуноглобулины. Лимфоциты обеспечивают тканевой иммунитет. Иммуноглобулины, особенно группы А, не подвергаются деятельности протеолитических ферментов пищеварительного сока, препятствуют фиксации антигенов пищи на слизистой оболочке и способствуют их распознаванию, формируя определенный ответ организма.

Деятельность микрофлоры связана с присутствием в составе аэробных бактерий (10 %) и анаэробных (90 %). Они расщепляют растительные волокна (целлюлозу, гемицеллюлозу и др.) до жирных кислот, участвуют в синтезе витаминов К и группы В, тормозят процессы гниения и брожения в тонком кишечнике, стимулируют иммунную систему организма. Отрицательным является образование в ходе молочнокислого брожения индола, скатола и фенола.

Таким образом, система пищеварения обеспечивает механическую и химическую обработку пищи, осуществляет всасывание конечных продуктов распада в кровь и лимфу, транспортирует к клеткам и тканям питательные вещества, выполняет энергетическую и пластическую функции.

2. Типы пищеварения

Выделяют три типа пищеварения:

1) внеклеточное;

2) внутриклеточное;

3) мембранное.

Внеклеточное пищеварение происходит за пределами клетки, которая синтезирует ферменты. В свою очередь, оно делится на полостное и внеполостное. При полостном пищеварении ферменты действуют на расстоянии, но в определенной полости (например, это выделение секрета слюнными железами в ротовую полость). Внеполостное осуществляется за пределами организма, в котором образуются ферменты (например, микробная клетка выделяет секрет в окружающую среду).

Мембранное (пристеночное) пищеварение было описано в 30-е гг. XVIII в. А. М. Уголевым. Оно осуществляется на границе между внеклеточным и внутриклеточным пищеварением, т. е. на мембране. У человека осуществляется в тонком кишечнике, поскольку там имеется щеточная кайма. Она образована микроворсинками – это микровыросты мембраны энтероцитов длиной примерно 1–1,5 мкм и шириной до 0,1 мкм. На мембране 1 клетки может образовываться до нескольких тысяч микроворсинок. Благодаря такому строению увеличивается площадь контакта (более чем в 40 раз) кишечника с содержимым. Особенности мембранного пищеварения:

1) осуществляется за счет ферментов, имеющих двойное происхождение (синтезируются клетками и абсорбируются содержимого кишечника);

2) ферменты фиксируются на клеточной мембране таким образом, чтобы активный центр был направлен в полость;

3) происходит только в стерильных условиях;

4) является заключительным этапом в обработке пищи;

5) сближает процесс расщепления и всасывания за счет того, что конечные продукты переносятся на транспортных белках.

В организме человека полостное пищеварение обеспечивает расщепление 20–50 % пищи, а мембранное – 50–80 %.

3. Секреторная функция системы пищеварения

Секреторная функция пищеварительных желез заключается в выделении в просвет желудочно-кишечного тракта секретов, принимающих участие в обработке пищи. Для их образования клетки должны получать определенные количества крови, с током которой поступают все необходимые вещества. Секреты желудочно-кишечного тракта – пищеварительные соки. Любой сок состоит на 90–95 % воды и сухого остатка. В сухой остаток входят органические и неорганические вещества. Среди неорганических наибольший объем занимают анионы и катионы, соляная кислота. Органические представлены:

1) ферментами (главный компонент – протеолитические ферменты, расщепляющие белки до аминокислот, полипептидов и отдельных аминокислот, глюколитические ферменты преобразуют углеводы до ди– и моносахаров, липолитические ферменты превращают жиры в глицерин и жирные кислоты);

2) лизином. Основной компонент слизи, придающий вязкость и способствующий образованию пищевого комка (болеоса), в желудке и кишечнике взаимодействует с бикарбонатами желудочного сока и образует мукозобикарбонатный комплекс, который выстилает слизистую оболочку и предохраняет ее от самопереваривания;

3) веществами, которые обладают бактерицидным действием (например, муропептидазой);

4) веществами, которые подлежат удалению из организма (например, азотосодержащие – мочевина, мочевая кислота, креатинин и т. д.);

5) специфическими компонентами (это желчные кислоты и пигменты, внутренний фактор Кастла и др.).

На состав и количество пищеварительных соков оказывает влияние рацион питания.

Регуляция секреторной функции осуществляется тремя способами – нервным, гуморальным, местным.

Рефлекторные механизмы представляют собой отделение пищеварительных соков по принципу условного и безусловного рефлексов.

Гуморальные механизмы включают три группы веществ:

1) гормоны желудочно-кишечного тракта;

2) гормоны желез внутренней секреции;

3) биологически активные вещества.

Гормоны желудочно-кишечного тракта относятся к простым пептидам, которые вырабатываются клетками APUD-системы. Большинство действует эндокринным путем, но некоторые из них осуществляют свое действие параэндокринным способом. Поступая в межклеточные пространства, они действуют на находящиеся рядом клетки. Так, например, гормон гастрин вырабатывается в пилорической части желудка, двенадцатиперстной кишке и верхней трети тонкого кишечника. Он стимулирует секрецию желудочного сока, особенно соляной кислоты и поджелудочных ферментов. Бамбезин образуется в том же месте и является активатором для синтеза гастрина. Секретин стимулирует отделение сока поджелудочной железы, воды и неорганических веществ, подавляет секрецию соляной кислоты, оказывает незначительное влияние на другие железы. Холецистокинин-панкреозинин вызывает отделение желчи и поступление ее в двенадцатиперстную кишку. Тормозное действие оказывают гормоны:

1) гастрон;

3) панкреатический полипептид;

4) вазоактивный интестинальный полипептид;

5) энтероглюкагон;

6) соматостатин.

Среди биологически активных веществ усиливающим действием обладают серотонин, гистамин, кинины и др. Гуморальные механизмы появляются в желудке и наиболее выражены в двенадцатиперстной кишке и в верхнем отделе тонкого кишечника.

Местная регуляция осуществляется:

1) через метсимпатическую нервную систему;

2) через непосредственное воздействие пищевой кашицы на секреторные клетки.

Стимулирующее влияние оказывают также кофе, пряные вещества, алкоголь, жидкая пища и т. д. Местные механизмы наиболее выражены в нижних отделах тонкого кишечника и в толстом кишечнике.

4. Моторная деятельность желудочно-кишечного тракта

Моторная деятельность представляет собой координированную работу гладких мышц желудочно-кишечного тракта и специальных скелетных мышц. Они лежат в три слоя и состоят из циркулярно расположенных мышечных волокон, которые постепенно переходят в продольные мышечные волокна и заканчиваются в подслизистом слое. К скелетным мышцам относятся жевательные и другие мышцы лица.

Значение моторной деятельности:

1) приводит к механическому расщеплению пищи;

2) способствует продвижению содержимого по желудочно-кишечному тракту;

3) обеспечивает открытие и закрытие сфинктеров;

4) влияет на эвакуацию переваренных пищевых веществ.

Существуют несколько видов сокращений:

1) перистальтические;

2) неперистальтические;

3) антиперистальтические;

4) голодовые.

Перистальтические относятся к строго координированным сокращениям циркулярного и продольного слоев мышц.

Циркулярные мыщцы сокращаются позади содержимого, а продольные – перед ним. Такой вид сокращений характерен для пищевода, желудка, тонкого и толстого кишечника. В толстом отделе также присутствуют масс-перистальтика и опорожнение. Масс-перистальтика происходит в результате одновременного сокращения всех гладкомышечных волокон.

Неперистальтические сокращения – это согласованная работа скелетной и гладкомышечной мускулатуры. Существуют пять видов движений:

1) сосание, жевание, глотание в ротовой полости;

2) тонические движения;

3) систолические движения;

4) ритмические движения;

Тонические сокращения – состояние умеренного напряжения гладких мышц желудочно-кишечного тракта. Значение заключается в изменении тонуса в процессе пищеварения. Например, при приеме пищи происходит рефлекторное расслабление гладких мышц желудка для того, чтобы он увеличился в размерах. Также они способствуют адаптации к различным объемам поступающей пищи и приводят к эвакуации содержимого за счет повышения давления.

Систолические движения возникают в антральном отделе желудка при сокращении всех слоев мышц. В результате происходит эвакуация пищи в двенадцатиперстную кишку. Большая часть содержимого выталкивается в обратном направлении, что способствует лучшему перемешиванию.

Ритмическая сегментация характерна для тонкого кишечника и возникает при сокращении циркулярных мышц на протяжении 1,5–2 см через каждые 15–20 см, т. е. тонкий кишечник делится на отдельные сегменты, которые через несколько минут возникают в другом месте. Такой вид движений обеспечивает перемешивание содержимого вместе с кишечными соками.

Маятникообразные сокращения возникают при растяжении циркулярных и продольных мышечных волокон. Такие сокращения характерны для тонкого кишечника и приводит к перемешиванию пищи.

Неперистальтические сокращения обеспечивают измельчение, перемешивание, продвижение и эвакуацию пищи.

Антиперистальтические движения возникают при сокращении циркулярных мышц впереди и продольных – позади пищевого комка. Они направлены от дистального отдела к проксимальному, т. е. снизу вверх, и приводят к рвоте. Акт рвоты – удаление содержимого через рот. Он возникает при возбуждении комплексного пищевого центра продолговатого мозга, которое происходит за счет рефлекторных и гуморальных механизмов. Значение заключается в перемещении пищи за счет защитных рефлексов.

Голодовые сокращения появляется при длительном отсутствии пищи каждые 45–50 мин. Их активность приводит к возникновению пищевого поведения.

5. Регуляция моторной деятельности желудочно-кишечного тракта

Особенностью моторной деятельности является способность некоторых клеток желудочно-кишечного тракта к ритмической спонтанной деполяризации. Это значит, что они могут ритмически возбуждаться. В результате возникает слабые сдвиги мембранного потенциала – медленные электрические волны. Поскольку они не достигают критического уровня, то сокращение гладких мышц не возникает, но происходит открытие быстрых потенциал зависимых кальциевых каналов. Ионы Ca движутся внутрь клетки и генерируют потенциал действия, приводящий к сокращению. После прекращения потенциал действия мышцы не расслабляются, а находятся в состоянии тонического сокращения. Это объясняется тем, что после потенциала действия остаются открытыми медленные потенциал зависимые каналы Na и Ca.

В гладкомышечных клетках имеются и хемочувствительные каналы, которые отрываются при взаимодействии рецепторов с какими-либо биологически активными веществами (например, медиаторами).

Регуляция этого процесса осуществляется тремя механизмами:

1) рефлекторным;

2) гуморальным;

3) местным.

Рефлекторный компонент вызывает торможение или активацию моторной деятельности при возбуждении рецепторов. Повышает моторную функцию парасимпатический отдел: для верхний части – блуждающие нервы, для нижней – тазовые. Тормозное влияние осуществляется за счет чревного сплетения симпатической нервной системы. При активации нижележащего отдела желудочно-кишечного тракта происходит торможение выше расположенного отдела. В рефлекторной регуляции выделяют три рефлекса:

1) гастроэнтеральный (при возбуждении рецепторов желудка активируются другие отделы);

2) энтеро-энтеральный (оказывают как тормозное, так и возбуждающие действие на нижележащие отделы);

3) ректо-энтеральный (при наполнении прямой кишки возникает торможение).

Гуморальные механизмы преобладают в основном в двенадцатиперстной кишке и верхней трети тонкого кишечника.

Возбуждающее действие оказывают:

1) мотилин (вырабатывается клетками желудка и двенадцатиперстной кишки, оказывает активирующее влияние на весь желудочно-кишечный тракт);

2) гастрин (стимулирует моторику желудка);

3) бамбезин (вызывает отделение гастрина);

4) холецистокинин-панкреозинин (обеспечивает общее возбуждение);

5) секретин (активирует моторку, но тормозит сокращения в желудке).

Тормозное влияние оказывают:

1) вазоактивный интестинальный полипептид;

2) гастроингибирующий полипептид;

3) соматостатин;

4) энтероглюкагон.

Гормоны желез внутренней секреции также влияют на моторную функцию. Так, например, инсулин ее стимулирует, а адреналин тормозит.

Местные механизмы осуществляются за счет наличия метсимпатической нервной системы и преобладают в тонком и толстом кишечнике. Стимулирующее действие оказывают:

1) грубые непереваренные продукты (клетчатка);

2) соляная кислота;

4) конечные продукты расщепления белков и углеводов.

Тормозное действие возникает при наличии липидов.

Таким образом, в основе моторной деятельности лежит способность к генерации медленных электрических волн.

6. Механизм работы сфинктеров

Сфинктер – утолщение гладкомышечных слоев, за счет которых весь желудочно-кишечный тракт делится на определенные отделы. Существуют следующие сфинктеры:

1) кардиальный;

2) пилорический;

3) илиоцикальный;

4) внутренний и наружный сфинктер прямой кишки.

В основу открытия и закрытия сфинктеров положен рефлекторный механизм, согласно которому парасимпатический отдел – открывает сфинктер, а симпатический – закрывает.

Кардиальный сфинктер располагается в месте перехода пищевода в желудок. При поступлении пищевого комка в нижние отделы пищевода возбуждаются механорецепторы. Они посылают импульсы по афферентным волокнам блуждающих нервов в комплексный пищевой центр продолговатого мозга и возвращаются по эфферентным путям к рецепторам, вызывая открытие сфинктеров. В результате пищевой комок поступает в желудок, что приводит к активации механорецепторов желудка, которые посылают импульсы по волокнам блуждающих нервов в комплексный пищевой центр продолговатого мозга. Они оказывают тормозное влияние на ядра блуждающих нервов, и под влиянием симпатического отдела (волокон чревного ствола) сфинктер закрывается.

Пилорический сфинктер находится на границе между желудком и двенадцатиперстной кишкой. В его работу включается еще один компонент, оказывающий возбуждающее влияние, – соляная кислота. Она действует на антральную часть желудка. При поступлении содержимого в желудок происходит возбуждение хеморецепторов. Импульсы направляются в комплексный пищевой центр продолговатого мозга, и сфинктер открывается. Поскольку в кишечнике щелочная среда, то при попадании подкисленной пищи в двенадцатиперстной кишке возбуждаются хеморецепторы. Это приводит к активации симпатического отдела и закрытию сфинктера.

Механизм работы остальных сфинктеров аналогичен принципу кардиального.

Основной функцией сфинктеров является эвакуация содержимого, которая не только способствует открытию и закрытию, но и приводит к повышению тонуса гладких мышц желудочно-кишечного тракта, систолическим сокращениям антральной части желудка, увеличению давления.

Таким образом, моторная деятельность способствует лучшему перевариванию, продвижению и удалению продуктов из организма.

7. Физиология всасывания

Всасывание – процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма – кровь и лимфу. Всасывание происходит на протяжении всего желудочно-кишечного тракта, но его интенсивность неодинакова и зависит от трех причин:

1) строения слизистой оболочки;

2) наличия конечных продуктов;

3) времени нахождения содержимого в полости.

Слизистая оболочка нижней части языка и дна ротовой полости истончена, но способна к всасыванию воды и минеральных веществ. Вследствие короткой продолжительности нахождения пищи в пищеводе (примерно 5–8 с) всасывания не происходит. В желудке и двенадцатиперстной кишке всасывается небольшое количество воды, минеральных веществ, моносахаридов, пептонов и полипептидов, лекарственных компонентов, алкоголя.

Основное количество воды, минеральных веществ, конечных продуктов расщепления белков, жиров, углеводов, лекарственных компонентов всасывается в тонком кишечнике. Это связано с рядом морфологических особенностей строения слизистой оболочки, за счет которых значительно увеличивается площадь контакта с наличием складок, ворсинок и микроворсинок). Каждая ворсинка покрыта однослойным цилиндрическим эпителием, который обладает высокой степенью проницаемости.

В центре располагается сеть лимфоидных и кровеносных капилляров, относящихся к классу фенестрированных. Они имеют поры, через которые проходят питательные вещества. В соединительной ткани также находятся гладкомышечные волокна, обеспечивающие движения ворсинок. Оно может быть нагнетательным и колебательным. Метсимпатическая нервная система осуществляет иннервацию слизистой оболочки.

В толстом кишечнике происходит формирование каловых масс. Слизистая этого отдела обладает способностью к всасыванию питательных веществ, но этого не происходит, так как в норме они поглощаются в вышележащих структурах.

8. Механизм всасывания воды и минеральных веществ

Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение энтероцитов, поскольку поглощение происходит неодинаково через апикальную, базальную и латеральные мембраны.

Исследованиями доказано, что всасывание – активный процесс деятельности энтероцитов. В опыте вводили в просвет желудочно-кишечного тракта монойодуксусную кислоту, которая вызывает гибель клеток кишечника. Это привело к резкому снижению интенсивности всасывания. Для этого процесса характерны транспортировка питательных веществ в двух направлениях и избирательность.

Всасывание воды осуществляется на протяжении всего желудочно-кишечного тракта, но наиболее интенсивно в тонком кишечнике. Процесс идет пассивно в двух направлениях за счет наличия осмотического градиента, который создается при движении Na, Cl и глюкозы. Во время приема пищи, содержащей большое количество воды, из просвета кишечника вода поступает во внутреннюю среду организма. И наоборот, при употреблении гиперосмотической пищи вода из плазмы крови выделяется в полость кишечика. За сутки всасывается около 8–9 л воды, из которых около 2,5 л поступает с пищей, а остальной объем входит в состав пищеварительных соков.

Всасывание Na, так же как и воды, происходит во всех отделах, но наиболее – интенсивно в толстом кишечнике. Na проникает через апикальную мембрану щеточной каймы, в которой находится транспортный белок – пассивный транспорт. А через базальную мембрану осуществляется активный транспорт – движение по электрохимическому градиенту концентрации.

Транспорт Cl связан с Na и также направлен по электрохимическому градиенту концентрации Na, содержащегося во внутренней среде.

Всасывание бикарбонатов основано на поступлении ионов H из внутренней среды во время транспорта Na. Ионы H взаимодействуют с бикарбонатами и образуют угольную кислоту. Под влиянием карбоангидразы кислота распадается на воду и углекислый газ. Далее всасывание во внутреннюю среду продолжается пассивно, выделение образовавшихся продуктов происходит через легкие при дыхании.

Всасывание двухвалентных катионов идет гораздо труднее. Наиболее легко транспортируется Ca. При небольших концентрациях катионы переходят внутрь энтероцитов с помощью кальцийсвязывающего белка путем облегченной диффузии. Из клеток кишечника он поступает во внутреннюю среду при помощи активного транспорта. При высокой концентрации катионы всасываются благодаря простой диффузии.

Железо поступает внутрь энтероцита путем активного транспорта, в ходе которого образуется комплекс железа и белка ферритина.

9. Механизмы всасывания углеводов, жиров и белков

Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно– и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем всасывание глюкозы сопряжено с ионами Na – симпорт. Манноза и пентоза поступают пассивно по градиенте концентрации глюкозы. Фруктоза поступает с помощью облегченной диффузии. Наиболее интенсивно идет всасывание глюкозы в кровь.

Всасывание белков наиболее интенсивно протекает в верхних отделах тонкого кишечника, причем белки животного происхождения составляют 90–95 %, а растительного – 60–70 %. Основными продуктами распада, которые образуются в результате обмена веществ, являются аминокислоты, полипептиды, пептоны. Для транспорта аминокислот необходимо наличие молекул переносчика. Выделено четыре группы транспортных белков, обеспечивающих активный процесс всасывания. Поглощение полипептидов происходит пассивно по градиенту концентрации. Продукты поступают непосредственно во внутреннюю среду и с током крови разносятся по организму.

Скорость всасывания жиров значительно меньше, наиболее активно всасывание протекает в верхних отделах тонкого кишечника. Транспорт жиров осуществляется в виде двух форм – глицерина и жирных кислот, состоящих из длинных цепей (олеиновой, стеариновой, пальмитиновой и др.). Глицерин поступает пассивно внутрь энтероцитов. Жирные кислоты образуют мицеллы с желчными кислотами и только в такой форме направляются к мембране кишечных клеток. Здесь комплекс распадается: жирные кислоты растворяются в липидах клеточной мембраны и проходят в клетку, а желчные кислоты остаются в полости кишечника. Внутри энтероцитов начинается активный синтез липопротеидов (хиломикрона) и липопротеидов очень низкой плотности. Затем эти вещества путем пассивного транспорта попадают в лимфатические сосуды. Уровень липидов, обладающих короткими и средними цепями, низкий. Поэтому они практически в неизменном виде путем простой диффузии всасываются внутрь энтероцитов, где под действием эстераз расщепляются на конечные продукты и принимают участие в синтезе липопротеидов. Такой способ транспорта требует меньших затрат, поэтому в некоторых случаях при перегрузке желудочно-кишечного тракта активируется данный вид всасывания.

Таким образом, процесс всасывания идет по механизму активного и пассивного транспорта.

10. Механизмы регуляции процессов всасывания

Нормальная функция клеток слизистой оболочки желудочно-кишечного такта регулируется нейрогуморальными и местными механизмами.

В тонком кишечнике основная роль принадлежит местному способу, так как на деятельность органов большое влияние оказывают интрамуральные сплетения. Они осуществляют иннервацию ворсинок. За счет этого увеличивается площадь взаимодействия пищевой кашицы со слизистой оболочкой, что увеличивает интенсивность процесса всасывания. Местное действие активируется при наличии конечных продуктов расщепления веществ и соляной кислоты, а также в присутствии жидкостей (кофе, чая, супа).

Гуморальная регуляция происходит за счет гормона желудочно-кишечного тракта вилликинина. Он вырабатывается в двенадцатиперстной кишке и стимулирует движение ворсинок. На интенсивность всасывания также оказывают воздействие секретин, гастрин, холецистокинин-панкреозинин. Не последнюю роль играют гормоны желез внутренней секреции. Так, инсулин стимулирует, а адреналин тормозит транспортную активность. Среди биологически активных веществ серотонин и гистамин обеспечивают всасывание.

Рефлекторный механизм основан на принципах безусловного рефлекса, т. е. стимуляция и угнетение процессов происходят с помощью парасимпатического и симпатического отделов вегетативной нервной системы.

Таким образом, регуляция процессов всасывания осуществляется с помощью рефлекторных, гуморальных и местных механизмов.

11. Физиология пищеварительного центра

Первые представления о строении и функциях пищевого центра были обобщены И. П. Павловым в 1911 г. По современным представлениям пищевой центр – это совокупность нейронов, расположенных на разных уровнях ЦНС, основная функция которых заключается в регуляции деятельности системы пищеварения и обеспечении адаптации к потребностям организма. В настоящее время выделены следующее уровни:

1) спинальный;

2) бульбарный;

3) гипоталамический;

4) корковый.

Спинальный компонент образован нервными клетками боковых рогов спинного мозга, обеспечивающих иннервацию всего желудочно-кишечного тракта и пищеварительных желез. Самостоятельного значения не имеет и подчиняется импульсам из вышележащих отделов. Бульбарный уровень представлен нейронами ретикулярной формации продолговатого мозга, которые входят в состав ядер тройничного, лицевого, языкоглоточного, блуждающего и подъязычного нервов. Совокупность этих ядер и образует комплексный пищевой центр продолговатого мозга, который регулирует секреторную, моторную и всасывательную функцию всего желудочно-кишечного тракта.

Ядра гипоталамуса обеспечивают определенные формы пищевого поведения. Так, например, латеральные ядра составляют центр голода или питания. При раздражении нейронов возникает булимия – обжорство, а при их разрушении животное погибает от недостатка питательных веществ. Вентромедиальные ядра образуют центр насыщения. При их активации животное отказывается от пищи, и наоборот. Перифорникальные ядра относятся к центру жажды, при раздражении животное постоянно требует воду. Значение этого отдела заключается в обеспечении различных форм пищевого поведения.

Корковый уровень представлен нейронами, входящими в состав мозгового отдела вкусовой и обонятельной сенсорных систем. Кроме этого, обнаружены отдельные точечные очаги в лобных долях коры больших полушарий, которые принимают участие в регуляции процессах пищеварения. По принципу условного рефлекса достигается более совершенное приспособление организма к условиям существования.

12. Физиология голода, аппетита, жажды, насыщения

Голод – состояние организма, возникающее при длительном отсутствии пищи, в результате возбуждения латеральных ядер гипоталамуса. Для чувства голода характерны два проявления:

1) объективное (возникновение голодовых сокращений желудка, приводящих к пищедобывающему поведению);

2) субъективное (неприятные ощущения в эпигастральной области, слабость, головокружение, тошнота).

В настоящее время существует две теории, объясняющие механизмы возбуждения нейронов гипоталамуса:

1) теория «голодной крови»;

2) «периферическая» теория.

Теория «голодной крови» была разработана И. П. Чукичевым. Ее суть заключается в том, что при переливании крови голодного животного сытому у последнего возникает пищедобывающее поведение (и наоборот). «Голодная кровь» активирует нейроны гипоталамуса за счет низких концентраций глюкозы, аминокислот, липидов и т. д.

Выделено два пути влияния:

1) рефлекторный (через хеморецепторы рефлексогенных зон сердечно-сосудистой системы);

2) гуморальный (бедная питательными веществами кровь притекает к нейронам гипоталамуса и вызывает их возбуждение).

Согласно «периферической» теории голодовые сокращения желудка передаются на латеральные ядра и приводят к их активации.

Аппетит – страстное желание еды, эмоциональные ощущения, связанные с приемом пищи. Он возникает на уровне коры больших полушарий по принципу условного рефлекса и не всегда в ответ на состояние голода, а иногда и на снижение уровня питательных веществ в крови (в основном глюкозы). Появление чувства аппетита связано с выделением большого количества пищеварительных соков, содержащих высокий уровень ферментов.

Насыщение возникает при удовлетворении чувства голода, сопровождающееся возбуждением вентромедиальных ядер гипоталамуса по принципу безусловного рефлекса. Существует два вида проявлений:

1) объективные (прекращение пищедобывающего поведения и голодовых сокращений желудка);

2) субъективные (наличие приятных ощущений).

В настоящее время разработано две теории насыщения:

1) первичная сенсорная;

2) вторичная или истинная.

Первичная теория основана на раздражении механорецепторов желудка. Доказательство: в опытах при введении в желудок животного баллончика через 15–20 мин наступает насыщение, сопровождающееся повышением уровня питательных веществ, взятых из депонирующих органов.

Согласно вторичной (или метаболической) теории истинное насыщение возникает лишь спустя 1,5–2 ч после приема пищи. В результате повышается уровень питательных веществ в крови, приводящих к возбуждению вентромедиальных ядер гипоталамуса. За счет наличия реципрокных взаимоотношений в коре больших полушарий наблюдается торможение латеральных ядер гипоталамуса.

Жажда – состояние организма, возникающее при отсутствии воды. Она возникает:

1) при возбуждении перифорникальных ядер во время уменьшения жидкости за счет активации волюморецепторов;

2) при уменьшении объема жидкости (происходит повышение осмотического давления, на что реагируют осмотические и натрийзависимые рецепторы);

3) при подсыхании слизистых оболочек ротовой полости;

4) при местном согревании нейронов гипоталамуса.

Различают истинную и ложную жажду. Истинная жажда появляется при уменьшении уровня жидкости в организме и сопровождается желанием выпить. Ложная жажда сопровождается подсыханием слизистой оболочки ротовой полости.

Таким образом, пищевой центр регулирует деятельность системы пищеварения и обеспечивает различные формы пищедобывающего поведения организмам человека и животных.

Начальным этапом обмена веществ является пищеварение. Для возобновления и роста тканей организма необходимо поступление с пищей соответствующих веществ. Пищевые продукты содержат белки, жиры и углеводы, а также необходимые организму витамины, минеральные соли и воду. Однако белки, жиры и углеводы, содержащиеся в пище, не могут быть усвоены его клетками в первоначальном виде. В пищеварительном тракте происходит не только механическая обработка пищи, но и химическое расщепление под воздействием ферментов пищеварительных желез, которые расположены по ходу желудочно-кишечного тракта.

Пищеварение в полости рта . В полости рта осуществляется гидролиз полисахаридов (крахмала, гликогена). ос-Амилаза слюны расщепляет гликозидные связи гликогена и молекул амилазы и амилопектина, которые входят в структуру крахмала, с образованием декстринов. Действие ос-амилазы в полости рта кратковременное, однако гидролиз углеводов под ее влиянием продолжается и в желудке за счет поступающей сюда слюны. Если содержимое желудка обрабатывается под влиянием соляной кислоты, то осамилаза инактивируется и прекращает свое действие.

Пищеварение в желудке . В желудке происходит переваривание пищи под влиянием желудочного сока. Последний продуцируется неоднородными в морфологическом отношении клетками, которые входят в состав пищеварительных желез.

Секреторные клетки дна и тела желудка выделяют кислый и щелочной секрет, а клетки антрального отдела - только щелочной. У человека объем суточной секреции желудочного сока составляет 2-3 л. Натощак реакция желудочного сока нейтральная или слабокислая, после приема пищи - сильнокислая (рН 0,8-1,5). В состав желудочного сока входят такие ферменты, как пепсин, гастриксин и липаза, а также значительное количество слизи - муцина.

В желудке происходит начальный гидролиз белков под влиянием протеолитических ферментов желудочного сока с образованием полипептидов. Здесь гидролизуется около 10 % пептидных связей. Вышеперечисленные ферменты активны только при соответствующем уровне НС1. Оптимальная величина рН для пепсина составляет 1,2-2,0; для гастриксина - 3,2-3,5. Соляная кислота вызывает набухание и денатурацию белков, что облегчает дальнейшее расщепление их протеолитическими ферментами. Действие последних реализуется преимущественно в верхних слоях пищевой массы, прилегающих к стенке желудка. По мере переваривания этих слоев пищевая масса смещается в пи-лорический отдел, откуда после частичной нейтрализации перемещается в двенадцатиперстную кишку. В регуляции желудочной секреции главное место занимает ацетилхолин, гастрин, гистамин. Каждый из них возбуждает секреторные клетки.

Различают три фазы секреции: мозговую, желудочную и кишечную. Стимулом для появления секреции желудочных желез в мозговой фазе являются все факторы, которые сопровождают прием пищи. При этом условные рефлексы, возникающие на вид и запах пищи, сочетаются с безусловными рефлексами, которые образуются при жевании и глотании.

В желудочной фазе стимулы секреции возникают в самом желудке, при его растяжении, при воздействии на слизистую ободочку продуктов гидролиза белка, некоторых аминокислот, а также экстрактивных веществ мяса и овощей.

Влияние на железы желудка происходит и в третьей, кишечной, фазе секреции, когда в кишечник поступает недостаточно переработанное желудочное содержимое.

Секретин двенадцатиперстной кишки тормозит секрецию НСl, но повышает секрецию пепсиногена. Резкое торможение желудочной секреции возникает при поступлении в двенадцатиперстную кишку жиров. .

Пищеварение в тонком кишечнике . У человека железы слизистой оболочки тонкой кишки образуют кишечный сок, общее количество которого за сутки достигает 2,5 л. Его рН составляет 7,2-7,5, но при усилении секреции может увеличиться до 8,6. Кишечный сок содержит более 20 различных пищеварительных ферментов. Значительное выделение жидкой части сока наблюдается при механическом раздражении слизистой оболочки кишки. Продукты переваривания пищевых веществ также стимулируют выделение сока, богатого ферментами. Кишечную секрецию стимулирует и вазоактивный интестинальный пептид.

В тонком кишечнике происходят два вида переваривания пищи: полостное и мембранное (пристеночиое). Первое осуществляется непосредственно кишечным соком, второе - ферментами, адсорбированными из полости тонкой кишки, а также кишечными ферментами, синтезируемыми в кишечных клетках и встроенными в мембрану. Начальные стадии пищеварения происходят исключительно в полости желудочно-кишечного тракта. Мелкие молекулы (олигомеры), образовавшиеся в результате полостного гидролиза, поступают в зону щеточной каймы, где происходит их дальнейшее расщепление. Вследствие мембранного гидролиза образуются преимущественно мономеры, которые транспортируются в кровь.

Таким образом, по современным представлениям, усвоение пищевых веществ осуществляется в три этапа: полостное пищеварение - мембранное пищеварение - всасывание. Последний этап включает процессы, которые обеспечивают перенос веществ из просвета тонкой кишки в кровь и лимфу. Всасывание происходит большей частью в тонком кишечнике. Общая площадь всасывающей поверхности тонкой кишки составляет приблизительно около 200 м 2 . За счет многочисленных ворсинок поверхность клетки увеличивается более чем в 30 раз. Через эпителиальную поверхность кишки вещества поступают в двух направлениях: из просвета кишки в кровь и одновременно из кровеносных капилляров в полость кишечника.

Физиология желчеобразования и выделения желчи . Процесс образования желчи происходит беспрерывно как путем фильтрации ряда веществ (вода, глюкоза, электролиты и др.) из крови в желчные капилляры, так и при активной секреции гепатоцитами солей желчных кислот и ионов натрия. .

Окончательное формирование желчи происходит в результате реабсорбции воды и минеральных солей в желчных капиллярах, протоках и желчном пузыре.

У человека в течение суток образуется 0,5-1,5 л желчи. Основными компонентами являются желчные кислоты, пигменты и холестерин. Кроме того, она содержит жирные кислоты, муцин, ионы (Na + ,К + , Са 2+ , Сl - , NCO - 3) и др.; рН печеночной желчи составляет 7,3-8,0, пузырной - 6,0 - 7,0.

Первичные желчные кислоты (холевая, хенодезоксихолевая) образуются в гепатоцитах из холестерина, соединяются с глицином или таурином и выделяются в виде натриевой соли гликохолевой и калиевой соли таурохолевой кислот. В кишечнике под влиянием микрофлоры они превращаются во вторичные желчные кислоты - дезоксихоле-вую и литохолевую. До 90 % желчных кислот активно ре-абсорбируется из кишечника в кровь и по портальным сосудам возвращается в печень. Желчные пигменты (билирубин, биливердин) - это продукты распада гемоглобина, они дают желчи характерную окраску.

Процесс образования желчи и ее выделения связан с пищей, секретином, холецистокинином. Среди продуктов сильными возбудителями желчеотделения являются яичные желтки, молоко, мясо и жиры. Прием пищи и связанные с ним условно- и безусловно-рефлекторные раздражители активируют желчевыделение. Вначале происходит первичная реакция: желчный пузырь расслабляется, а затем сокращается. Через 7-10 мин после приема пищи наступает период эвакуаторной деятельности желчного пузыря, который характеризуется чередованием сокращений и расслаблении и продолжается 3-6 ч. После окончания этого периода наступает торможение сократительной функции желчного пузыря и в нем снова начинает накапливаться печеночная желчь.

Физиология поджелудочной железы . Поджелудочный сок представляет собой бесцветную жидкость. В течение суток поджелудочная железа человека вырабатывает 1,5-2,0 л сока; его рН составляет 7,5-8,8. Под влиянием ферментов поджелудочного сока происходит расщепление кишечного содержимого до конечных продуктов, пригодных для усвоения организмом. -Амилаза, липаза, нуклеаза секретируются в активном состоянии, а трипсиноген, химотрипсиноген, профосфолипаза А, проэластаза и прокарбоксипептидазы А и В - в виде проферментов. Трипсиноген в двенадцатиперстной кишке превращается в трипсин. Последний активизирует профосфолипазу А, проэластазу и прокарбоксипептидазы А и В, которые превращаются соответственно в фосфолипазу А, эластазу и карбоксипептидазы А и В.

Ферментный состав сока поджелудочной железы зависит от вида принимаемой пищи: при приеме углеводов возрастает преимущественно секреция амилазы; белков - трипсина и химотрипсина; жирной пищи - липазы. В состав сока поджелудочной железы входят бикарбонаты, хлориды Na + , К + , Са 2+ , Mg 2+ , Zn 2+ .

Секреция поджелудочной железы регулируется нервно-рефлекторным и гуморальным путями. Различают спонтанную (базальную) и стимулирующую секрецию. Первая обусловлена способностью клеток поджелудочной железы к автоматизму, вторая - влиянием на клетки нейрогуморальных факторов, которые включаются в процесс приемом пищи.

Основными стимуляторами экзокринных клеток поджелудочной железы являются ацетилхолин и гастроинстести-нальные гормоны - холецистокинин и секретин. Они усиливают выделение ферментов и бикарбонатов поджелудочным соком. Поджелудочный сок начинает выделяться через 2-3 мин после начала принятия пищи в результате рефлекторного возбуждения железы с рецепторов ротовой полости. А затем воздействие желудочного содержимого на двенадцатиперстную кишку высвобождает гормоны холецистокинин и секретин, которые и определяют механизмы секреции поджелудочной железы.

Пищеварение в толстом кишечнике . Пищеварение в толстом кишечнике практически отсутствует. Низкий уровень ферментативной активности связан с тем, что поступающий в этот отдел пищеварительного тракта химус беден непереваренными пищевыми веществами. Однако толстая кишка в отличие от других отделов кишечника богата микроорганизмами. Под влиянием бактериальной флоры происходит разрушение остатков непереваренной пищи и компонентов пищеварительных секретов, в результате чего образуются органические кислоты, газы (СО 2 , СН 4 , H 2 S) и токсичные для организма вещества (фенол, скатол, индол, крезол). Часть этих веществ обезвреживается в печзни, другая - выводится с каловыми массами. Большое значение имеют ферменты бактерий, расщепляющие целлюлозу, гемицеллюлозу и пектины, на которые не действуют пищеварительные ферменты. Эти продукты гидролиза всасываются толстой кишкой и используются организмом. В толстой кишке микроорганизмами синтезируются витамин К и витамины группы В. Наличие в кишечнике нормальной микрофлоры защищает организм человека и повышает иммунитет. Остатки непереваренной пищи и бактерии, склеенные слизью сока толстой кишки, образуют каловые массы. При определенной степени растяжения прямой кишки возникает позыв к дефекации и происходит произвольное опорожнение кишечника; рефлекторный непроизвольный центр дефекации находится в крестцовом отделе спинного мозга.

Всасывание . Продукты пищеварения проходят через слизистую оболочку желудочно-кишечного тракта и всасываются в кровь и лимфу при помощи транспорта и диффузии. Всасывание происходит главным образом в тонком кишечнике. Слизистая оболочка ротовой полости также обладает способностью к всасыванию, это свойство используется в применении некоторых лекарственных препаратов (валидол, нитроглицерин и др.). В желудке всасывание практически не происходит. В нем всасываются вода, минеральные соли, глюкоза, лекарственные вещества и др. В двенадцатиперстной кишке также происходит всасывание воды, минеральных веществ, гормонов, продуктов расщепления белка. В верхних отделах тонкого кишечника углеводы в основном всасываются в виде глюкозы, галактозы, фруктозы и других моносахаридов. Аминокислоты белков всасываются в кровь при помощи активного транспорта. Продукты гидролиза основных пищевых жиров (триглицериды) способны проникать через клетку кишечника (энтероцит) только после соответствующих физико-химических преобразований. Моноглицериды и жирные кислоты всасываются в энтероцитах только после взаимодействия с желчными кислотами путем пассивной диффузии. Образовав с желчными кислотами комплексные соединения, они транспортируются главным образом в лимфу. Часть жиров может поступать непосредственно в кровь, минуя лимфатические сосуды. Всасывание жиров тесно связано с всасыванием жирорастворимых витаминов (A, D, Е, К). Витамины, растворимые в воде, могут всасываться методом диффузии (например, аскорбиновая кислота, рибофлавин). Фолиевая кислота усваивается в конъюгированном виде; витамин В 12 (цианокобаламин) - в подвздошной кишке при помощи внутреннего фактора, который образуется на теле и дне желудка.

В тонкой и толстой кишках происходит всасывание воды и минеральных солей, которые поступают с пищей и сек-ретируются пищеварительными железами. Общее количество воды, которое всасывается в кишечнике человека в течение суток, составляет около 8-10 л, натрия хлорида - 1 моль. Транспорт воды тесно связан с транспортом ионов Na + и определяется им.

Организм человека и животного - это открытая термодинамическая система, которая постоянно обменивается веществом и энергией с окружающей средой. Организм требует пополнения энергетического и строительного материала. Это необходимо для работы, поддержания температуры, восстановления тканей. Эти материалы человек и животные получает из окружающей среды в виде животного или растительного происхождения. В пищевых продуктах в разных соотношениях питательные вещества - белки, жиры.Питательные вещества - это крупные полимерные молекулы. Пища также содержит воду, минеральные соли, витамины. И хотя эти вещества не являются источником энергии, они являются очень важными компонентами для жизнедеятельности. Питательные вещества из пищевых продуктов не могут быть сразу усвоены; для этого необходима обработка питательных веществ в ЖКТ, чтобы продукты переваривания могли быть использованы.

Длина пищеварительного тракта равна примерно 9 м. В состав пищеварительной системы входит ротовая полость, глотка пищевод, желудок, тонкая и толстая кишка, прямая кишка и анальный канал. Имеются добавочные органы ЖКТ - они включают язык, зубы, слюнные железы, поджелудочную железу, печень и желчный пузырь.

Пищеварительный канал состоит из четырёх слоев или оболочек.

  1. Слизистая
  2. Подслизистая
  3. Мышечная
  4. Серозная

Каждая оболочка выполняет свои функции.

Слизистая оболочка окружает просвет пищевого канала и является главной всасывательной поверхностью и секреторной. Слизистая покрыта цилиндрическим эпителием, который располагается на собственной пластинке. В пластинки имеются многочисленные лимф. Узелки и они выполняют защитную функцию. Снаружи слой гладких мышц - мышечная пластинка слизистой оболочки. Благодаря сокращению этих мышц слизистая образует складки. В слизистой также находятся бокаловидные клетки, которые продуцируют слизь.

Подслизистая оболочка представлена слоем соединительной ткани с большим количеством кровеносных сосудов. В подслизистой оболочке содержатся железы и подслизистое нервное сплетение - сплетение Йейснера . Подслизистый слой обеспечивает питание слизистой оболочки и вегетативную иннервацию желез, гладкие мышц мышечной пластинки.

Мышечная оболочка . Состоит из 2х слоев гладких мышц. Внутреннего - циркулярного и наружного - продольного. Мышцы располагаются в виде пучков. Мышечная оболочка предназначена для выполнения моторной функции, для механической обработки пищи и продвижения пищи вдоль пищеварительного канала. В мышечной оболочке заложено второе сплетение - Ауэрбаха. На клетках сплетений в ЖКТ оканчиваются волокна симпатических и парасимпатических нервов. В составе имеются клетки чувствительные - клетки Доггеля, есть клетки двигательные - первого типа, имеются тормозные нейроны. Совокупность элементов ЖКТ - интегральная часть автономной нервной системы.

Наружная серозная оболочка - соединительная ткань и плоский эпителий.

В целом ЖКТ предназначен для протекания процессов пищеварения и основа пищеварения - гидролитический процесс расщепления крупных молекул до более простых соединений, которые могут быть получены кровью и тканевой жидкостью и доставлены к месту. Работа системы пищеварения напоминает функцию разборочного конвейера.

Этапы пищеварения.

  1. Поглощение пищи . Он включает в себя поглощение пищи в ротовую полость, пережевывание пищи на более мелкие кусочки, увлажнение, формирование пищевого комка и глотание
  2. Переваривание пищи . В ходе его осуществляется дальнейшая обработка и ферментативное расщепление питательных веществ, при этом белки расщепляются протеазам идо дипептидов и аминокислот. Углеводы расщепляются амилазой до моносахаридов, а жиры , расщепляются под действием липаз и эстераз до моноглицирина и жирных кислот.
  3. Образовавшиеся просты соединения подвергаются следующему процессу - всасывание продуктов . Но всасываются не только продукты расщепления питательных веществ, но всасываются вода, электролиты, витамины. В ходе всасывания происходит перенос веществ в кровь и лимфу. В ЖКТ идет процесс химический, то как на любом производстве возникают побочные продукты и отходы, которые нередко могут быть ядовитыми.
  4. Экскреция - подвергаются удалению из организма в виде каловых масс. Для осуществления процессов пищеварения пищеварительная система выполняет моторную, секреторную, всасывательную и экскреторная функция.

Пищеварительный тракт участвует в водно-солевом обмене, в нем вырабатывается ряд гормонов - эндокринная функция, имеет защитную иммунологическую функцию.

Типы пищеварения - подразделяются в зависимости от поступления гидролитических ферментов и делятся на

  1. Собственное - ферменты макроорганизма
  2. Симбионтное - за счет ферментов, которые дает нам бактерии и простейшие обитающих в ЖКТ
  3. Аутолитическое пищеварение - за счет ферментов, которые содержатся в самих пищевых продуктах.

В зависимости от локализации процесса гидролиза питательных веществ пищеварение делится на

1. Внутриклеточное

2. Внеклеточное

Дистантное или полостное

Контактное или пристеночное

Полостное пищеварение будет происходит в просвете ЖКТ, ферментами, на мембране микроворсинок клеток кишечного эпителия. Микроворсинки покрыты слоем полисахаридов, образуют большую каталитическую поверхность, что обеспечивает быстрое расщепление и быстрое всасывание.

Значение работы И.П. Павлова.

Попытки изучить процессы пищеварения начинаются ужу в 18 веке, так например Реамюр пытался получить желудочный сок, путем закладывание губки подвязанной на ниточке в желудок и получали пищеварительный сок. Были попытки вживлять стеклянные или металлические трубочки в протоки желез, но они довольно быстро выпадали и присоединялась инфекция. Первые клинические наблюдения а человеке были проведены при ранении желудка. В 1842 году московский хирург Басов наложил фистулу на желудок и закрывалась пробкой вне процессов пищеварения. Эта операция позволяла получать желудочный сок но недостатком было то, что он был смешан с пищей. Позднее в лаборатории Павлова эта операция была дополнена перерезкой пищевод ан шее. Такой опыт называют опытом мнимого кормления, а уже после кормления пережеванная пища осуществляется ее переваривание.

Английский физиолог Гейденгайн предложил выделять маленький желудочек из большого, это позволяло получать чистый желудочный сок, несмешанный с пищей, но недостатком операции - разрез - перпендикулярно большой кривизне - это пересекало нерв - вагус. На маленький желудочек могли действовать только гуморальные факторы.

Павлов предложил делать параллельно большой кривизне, вагус не перерезался, он отражал весь ход пищеварения в желудке с участием и нервных и гуморальных факторов. И.П. Павлов поставил задачей изучать функцию пищеварительного тракта максимально приближенной к нормальным условиям и Павлов разрабатывает методы физиологической хирургии осуществляя разнообразные операции на животных, которые в последующим помогли в изучении пищеварения. В основном операции были направлены на наложение фистул.

Фистула - искусственное сообщение полости органа или протока железы с окружающей средой для получения содержимого и после операции животное поправлялось. Дальше следовала восстановление, длительное питание.

В физиологии проводится острый опыты - однократно под наркозом и хронический опыт - в условиях максимально приближенным к нормальным - с наркозом, без болевых факторов - это дает более полное представление о функции. Павлов разрабатывает фистулы слюнных желез, операцию маленького желудочка, эзофаготомию, желчного пузыря и протока поджелудочной железы.

Первая заслуга Павлова в пищеварении состоит в разработке опытов хронического эксперимента. Далее Иван Петрович Павлов установил зависимость качества и количество секретов от вида пищевого раздражителя.

В третьих - приспособляемость желез к условиям питании. Павлов показал ведущее значение нервного механизма в регуляции пищеварительных желез. Работы Павлова в области пищеварения были обобщены в его книге «О работе важнейших пищеварительных желез» В 1904 году Павлов был удостоен Нобелевской премии. В 1912 году университет в Англии Ньютон, Байрон избирают Павлова почетным доктором кембриджского университета и на церемонии посвящения произошел такой эпизод, когда студенты Кембриджа спустили игрушечную собачку с многочисленными фистулами.

Физиология слюноотделения.

Слюна образуется тремя парами слюнных желез - околоушная, расположенная между челюстью и ухом, подчелюстная, расположенная под нижней челюстью, и подъязычная. Мелкие слюнные железы - работают постоянно в отличие от крупных.

Околоушная железа состоит только из серозных клеток с водянистым секретом. Подчелюстная и подъязычная железы выделяют смешанный секрет, т.к. включают в себя и серозные и слизистые клетки. Секреторной единицей слюнной железы - саливон , в который входит ацинус, слепо заканчивающийся расширение и образован ацинарными клетками, ацинус, затем открывается во вставочный проток, который переходит в исчерченный проток. Клетки ацинуса секретируют белки и электролиты. Сюда же поступает и вода. Затем, коррекция содержания электролитов в слюне осуществляется вставочными и исчерченными протоками. Секреторные клетки еще окружены миоэпителиальными клетками, способными к сокращению и миоэпителиальные клетки сокращаясь выдавливают секрет и способствуют его продвижению по протоку. Слюнные железы получаю обильное кровоснабжение, кроваток в них в 20 раз больше чем в других тканях. Поэтому эти небольшие по размеру органы обладают довольно мощной секреторной функцией. За сутки вырабатываются от 0,5 - 1,2 л. слюны.

Слюна.

  • Вода - 98,5%- 99 %
  • Плотный остаток 1-1,5%.
  • Электролиты - К, НСО3, Na, Cl, I2

Слюна выделяемая в протоках гипотонична в сравнении с плазмой. В ацинусах происходит выделение электролитов секреторными клетками и они содержатся в таком же количестве как и в плазме, но по мере движения слюны по протокам происходит поглощение ионов натрия, хлора, количество ионов калия и бикарбоната, становится больше. Слюна характеризуется преобладанием калия и бикарбоната. Органический состав слюны представлен ферментами- альфа-амилаза(птиалин), язычная липаза - вырабатывается железами, располагающимися в корне языка.

Слюнные железы содержат каликреин, слизь, лактоферин - связывают железо и способствует уменьшению бактерий, гликопротеины лизоцим, иммуноглобулины - А,М, антигены А, Б, АБ, 0.

Слюна выводится по протокам - функции - смачивание, формирование пищевого комка, глотаний. В ротовой полости - начальный этап расщепления углеводов и жиров. Полного расщепления не может происходить т.к. короткое время нахождение пищи в пищевой полости. Оптимум действия слюны - слабощелочная среда. PН слюны = 8. Слюна ограничивает рост бактерий, способствует заживлению повреждений, отсюда зализывание ран. Слюна нам нужна для нормальной функции речи.

Фермент амилаза слюны осуществляет расщепление крахмала до мальтозы и мальтотриозы. Амилаза слюны сходна с амилазой поджелудочного сока, который также расщепляет углеводы до мальтозы и мальтотриозы. Мальтаза и изомальтаза, расщепляет эти вещества до глюкозы.

Липаза слюны начинает расщеплять жиры и ферменты продолжают свое действие в желудке, пока не сменится значение рН.

Регуляция слюноотделения.

Регуляция сляноотделения осуществляется парасимпатическими и симпатическими нервами, и при этом слюнные железы регулируются только рефлекторно, т. к. для них не характерен гуморальный механизм регуляции. Выделение слюнным может осуществляться с помощью безусловных рефлексов, которые возникают при раздражение слизистой оболочки полости рта. При этом могут быть пищевые раздражители и непищевые.

Механическое раздражение слизистой оболочки тоже влияет слюноотделение. Слюноотделение может возникнут на запах, вид, воспоминание вкусной пищи. Слюноотделение формируется при тошноте.

Торможение слюноотделения наблюдается во время сна, при утомлении, при страхе и при обезвоживание организма.

Слюнные железы получают двойную иннервацию от автономной нервной системы. Они иннервируются парасимпатическим и симпатическим отделом. Парасимпатическую иннервацию осуществляют 7 и 9 пары нервов. В них находятся 2 слюноотделительных ядра - верхнее -7 и нижнее - 9. Седьмая пара иннервируют подчелюстную и подъязычную железы. 9 пара - околоушная железа. В окончаниях парасимпатических нервов происходит выделение ацетилхолина и при действии ацетилхолина на рецепторы секреторных клеток через G-белки происходит иннервация вторичного посредника инозитол-3-фосфата, а он увеличивает содержания кальция внутри. Это приводит к увеличению секреции слюны бедной по органическому составу - вода + электролиты.

Симпатические нервы достигают слюнных желез через верхний шейны симпатический ганглий. В окончаниях постганглионарных волокон происходит выделение норадреналина, т.е. секреторных клетки слюнных желез имеют адренорецепторы. Норадреналин вызывает активацию аденилатциклазы с последующим образованием циклического АМФ и циклический АМФ усиливает образование протеинкиназы А, которая необходима для синтеза белка и симпатические влияния на слюнные железы увеличивают секрецию.

Слюна с большой вязкостью с большим количеством органических веществ. В качестве афферентного звена возбуждения слюнных желез это будут участвовать нервы, которые обеспечивают общую чувствительность. Вкусовая чувствительность передней трети языка - лицевой нерв, задняя треть - языкоглоточный. Задние отделы еще имеют иннервацию от блуждающего нерва. Павлов показал, что секреция слюны на отвергаемые вещества, а попадание речного песка, кислот, других химических веществ, происходит большое выделение слюны, именно жидкой слюны. Слюноотделение зависит также от раздробленности пищи. На пищевые вещества дается меньшее количество слюны но с большим содержанием фермента.

Физиология желудка.

Желудок является отделом пищеварительного тракта, Ге пища задерживается от 3 до 10 часов для механической и химической обработки. Небольшое количество пищи переваривается в желудке, всасывательная площадь тоже не велика. Это резервуар для запасания пищи. В желудке мы выделяем дно, тело, пилорический отдел. Содержимое желудка ограничивается от пищевода кардиальным сфинктером. При переходе пилорического отдела в 12перстную кишку. Там находится функциональный сфинктер.

Функция желудка

  1. Депонированеи пищи
  2. Секреторная
  3. Моторная
  4. Всасывательная
  5. Экскреторная функция. Способствует удалению мочевины, мочевой кислоты, креатина, креатинина.
  6. Инкреторная функция - образование гормонов. Желудок выполняет защитную функцию

На основании функциональных особенностей слизистую делят на кислотопродуцирующую, которая располагается в проксимальном отделе на центральной части тела, выделяют также антральную слизистую, которая не образует соляную кислоту.

Состав - слизистые клетки, которые образуют слизь.

  • Обкладочные клетки, вырабатывающие соляную кислоту,
  • Главные клетки, которые продуцируют ферменты
  • Эндокринные клетки, которые вырабатывают гормон G-клетки - гастрин, D - клетки - соматостатин.

Гликопротеин - образует слизистый гель, он обволакивает стенку желудка и предупреждает действие соляной кислоты на слизистую оболочку. Этот слой очень важен иначе нарушение слизистой оболочки. Он разрушается никотином, мало вырабатывается слизи при стрессовых ситуациях, которые могут приводить при гастритах и язвах.

Железы желудка вырабатывают пепсиногены, которые действуют на белки, они в неактивной форме и нуждаются в соляной кислоте. Соляная кислота вырабатывается обкладочными клетками, которые также вырабатывают фактор Касла - который нужен для усвоения внешнего фактора B12. В области антрального отдела отсутствуют обкладочные клетки, сок вырабатывается в слабощелочной реакции, но слизистая оболочка антрального отдела богата эндокринными клетками, которые вырабатывают гормоны. 4G-1D - соотношение.

Для изучения функции желудка изучаются методы которые накладывают фистулы - выделение маленького желудочка(По Павлову) а у человека желудочная секреция изучается методом зондирования и получение желудочного сока натощак без дачи пищи, а затем после пробного завтрака и самым распространенным завтракам является - стакан чая без сахара и кусочек хлеба. Такие простые продукты являются мощными стимуляторами желудка.

Состав и свойства желудочного сока .

В состоянии покоя в желудке у человека(без приема пищи) находится 50 мл базальной секреции. Это смесь слюны, желудочного сока и иногда заброса из 12перстной кишки. За сутки образуется около 2 л желудочного сока. Это прозрачная опалесцирующая жидкость с плотностью 1,002-1,007. Имеет кислую реакцию, поскольку есть соляная кислота(0,3-0,5%). рН-0,8-1,5. Соляная кислота может находится в свободном состоянии и в связанном с белком. Желудочный сок также содержит неорганические вещества - хлориды, сульфаты, фосфаты и бикарбонаты натрия, калия, кальция, магния. Органические вещества представлены ферментами. Основные ферменты желудочного сока это пепсины(протеазы, действующие на белки) и липазы.

Пепсин А - рН 1,5-2,0

Гастриксин, пепсин С - рН- 3,2-,3,5

Пепсин B - желатиназа

Ренин, пепсин Д химозин.

Липаза, действует на жиры

Все пепсины выделяются в неактивной форме в виде пепсиногена. Сейчас преложено разделить пепсины на группы 1 и 2.

Пепсины 1 выделяются только в кислотообразующей части слизистой желудка - где имеются обкладочные клетки.

Антральная часть и пилорическая часть - там выделяются пепсины группы 2 . Пепсины осуществляют переваривание до промежуточных продуктов.

Амилаза, которая попадает со слюной может некоторое время расщеплять углеводы в желудке, пока не произойдет смена рН в кислую стону.

Основной компонент желудочного сока - вода - 99-99,5%.

Важный компонент - соляная кислота. Её функции:

  1. Она способствует превращению неактивной формы пепсиногена в активную - пепсины.
  2. Соляная кислота создает оптимальное значение рН для протеолитических ферментов
  3. Вызывает денатурацию и набухание белков.
  4. Кислота обладает антибактериальным действием и бактерии которые попадают в желудок они погибают
  5. Участвует в образовании и гормона - гастрина и секретина.
  6. Затвораживает молоко
  7. Участвует в регуляции перехода пищи из желудка, в 12-персную кишку.

Соляная кислота образуется в обкладочных клетках. Это достаточно крупные клетки пирамидальной формы. Внутри этих клеток - большое количество митохондрий, они содержат систему внутриклеточных канальцев и с ними тесно связаны пузырьковая система в форме везикул. Эти везикулы связываются с канальцевой частью при их активации. В канальце образуется большое число микроворсинок, которые увеличивают площадь поверхности.

Образование соляной кислоты происходит внутриканальцевой системе обкладочных клеток.

На первом этапе происходит перенос аниона хлора в просвет канальца. Ионы хлора поступают через специальный хлорный канал. В канальце создается отрицательный заряд который притягивает туда внутриклеточный калий.

На следующем этапе происходит обмен калия на протон водорода, за счет активного транспорта водород калий АТФаза. Калий обменивается на протон водорода. С помощью этого насоса калий загоняется внутриклетоной стенки. Внутри клетки образуется угольная кислота. Она образуется в результате взаимодействия углекислого газа и воды за счет карбоангидразы. Угольная кислота диссоциирует на протон водорода и анион HCO3. Протон водорода обменивается на калий, а анион HCO3 обменивается на ион хлора. В обкладочную клетку поступает хлор, который потом пойдет в просвет канальца.

В обкладочных клетках есть еще один механизм - натрий - калий атфаза, который выводит натрий из клетки и возвращает натрий.

Процесс образования соляной кислоты - энергозатратный процесс. АТФ образуется в митохондриях. Они могут занимать до 40 % объема обкладочных клеток. Концентрация соляной кислоты в канальцах очень высока. PН внутри канальца до 0,8 - концентрация соляной кислоты 150млмоль на л. Концентрация в 4000000 выше чем в плазме. Процесс образования соляной кислоты в обкладочных клетка регулируется влияниями на обкладочную клетку ацетилхолина, который выделяется в окончаниях блуждающего нерва.

Обкладочные клетки имеют холинорецепторы и стимулируется образование HСl.

Гастриновые рецепторы и гормон гастрин тоже активирует образование HCl, причем это происходит через активацию мембранных белков и образования фосфолипазы C и образуется инозитол-3-фосфат и это стимулирует увеличение кальция и запускается гормональный механизм.

Третий тип рецепторов - гистаминовые рецепторы H 2 . Гистамин вырабатывается в желудки в энтерохромтаинных тучных клетках. Гистамин действует на H2 рецепторы. Здесь влияние реализуется через аденилатциклазный механизм. Активируется аденилатциклаза и образуется циклический АМФ

Тормозит - соматостатин, который вырабатывается в Д клетках.

Соляная кислота - основной фактор поражения слизистой при нарушении защиты оболочки. Лечение гастрита - подавление действия соляной кислоты. Очень широко используются антогонисты гистамина - циметидин, ранитидин, блокируют H2 рецепторы и снижается образование соляной кислоты.

Подавление водород-калий атфазы. Было получено вещество, которое является фармакологическим препаратом омепразол. Он подавляет водород-калий атфазу. Это очень мягкое действие, снижающие выработку соляной кислоты.

Механизмы регуляции желудочной секреции .

Процесс желудочного пищеварения условно подразделяется на 3 наслаивающиеся на друг друга фазы

1. Сложно рефлекторная - мозговая

2. Желудочная

3. Кишечная

Иногда две последние объединяют в нейрогуморльную.

Сложно-рефлеторная фаза . Обусловлена возбуждением желудочных желез комплексом безусловных и условных рефлексов, связанных с приемом пищи. Условные рефлексы возникают при раздражении обонятельных, зрительных, слуховых рецепторов, на вид, запах, на обстановку. Это условные сигналы. На них накладывается воздействие раздражителей на полость рта, рецепторы глотки, пищевода. Это безусловные раздражения. Именно эту фазу Павлов и изучал в опыте мнимого кормления. Латенетный период от начала кормления - 5-10 минут, то есть включаются желудочные железы. После прекращения кормления - секреция длится 1,5-2 часа, если пища не попадает в желудок.

Секреторными нервами будут являться блуждающие. Именно через них происходит воздействие на обкладочные клетки, которые вырабатывают соляную кислоту.

Блуждающий нерв стимулирует гастриновые клетки в антральном отделе и образуется Гастрин, а Д клетки, где вырабатываются соматостатин тормозятся. Было обнаружено, что на гастриновые клетки блуждающий нерв действует через медиатор - бомбезин. Это возбуждает гастриновые клетки. На Д клетки, которые продуцирует соматостатин он подавляет. В первую фазу желудочной секреции - 30% желудочного сока. Он обладает высокой кислотностью, переваривающей силой. Цель первой фазы - готовить желудок к приему пищи. Когда пища попадает в желудок начинается желудочная фаза секреции. При этом пищевое содержимое механически растягивает стенки желудка и возбуждаются чувствительные окончания блуждающих нервов, а также чувствительные окончания, которые образованы клетками подслизистого сплетения. В желудке возникают местные рефлекторные дуги. Клетка Доггеля(чувствительная) образует рецептор в слизистой и при раздражении она возбуждается и передает возбуждение на клетки 1ого типа - секреторные или моторные. Возникает локальный местный рефлекс и железа начинает работать. Клетки 1ого типа являются и постганлионарами для блуждающего нерва. Блуждающие нервы держат под контролем гуморальный механизм. Одновременно с нервным механизмом начинает работать гуморальный механизм.

Гуморальный механизм связан с выделение Гастрина G клетками. Они вырабатывают две формы гастрина - из 17 аминокислотных остатков - «малый» гастрин и есть вторая форма из 34 аминокислотных остатков - большой гастрин. Малый гастрин обладает более сильным действием, чем большой но в крови содержится больше большого гастрина. Гастрин, который вырабатывается подгастриновыми клетками и действует на обкладочные клетки, стимулируя образование HСl. Он же действует и на обкладочные клетки.

Функции гастрина - стимулирует секрецию соляной кислоты, усиливает выработку фермента, стимулирует моторику желудка, необходим для роста слизистой оболочки желудка. Еще он стимулирует выделение сока поджелудочной железы. Выработка гастрина стимулируется не только нервными факторами, но и пищевые продукты, которые образуются в ходе расщепления пищи тоже являются стимуляторами. К ним относят продукты расщепления белка, алкоголь, кофе - кофеиновый и безкофеиновый. Выработка соляной кислоты зависит от ph и при снижении ph ниже 2х, происходит подавление выработки соляной кислоты. Т.е. это связано с тем, что высокая концентрация соляной кислоты тормозит выработку гастрина. В то же время высокая конецентрация соляной кислоты активирует выработку соматостатина, а он угнетает выработку гастрина. Аминокислоты и пептиды могут непосредственно действовать на обкладочные клетки и повышать секрецию соляной кислоты. Белки, обладая буферными свойствами, связывают протон водорода и поддерживает оптимальный уровень образования кислоты

Желудочную секрецию поддерживает кишечная фаза . Когда химус поступает в 12 перстную, то он влияет на желудочную секрецию. 20% желудочного сока вырабатываются в эту фазу. В ней вырабатываются энтерогастрин. Энтерооксинтин - эти гормоны вырабатываются под действием HСl, которая поступает из желудка в 12перстную кишку, под влиянием аминокислот. Если кислотность среды в 12перстной кишки будет высокая, то идет подавление выработки стимулирующих гормонов, а вырабатывается энтерогастрон. Одной из разновидностей будет - ЖИП - желудочноингибирующий пептид. Он тормозит выработку соляной кислоты и гастрина. К тормозящим веществам также относятся бульбогастрон, серотонин и нейротензин. Со стороны 12 перстной кишки могут возникать и рефлекторные влияния, которые возбуждают блуждающий нерв и включают местные нервные сплетения. В целом, отделение желудочного сока будет зависеть от количества качества пищи. Количество желудочного сока зависит от времени пребывания пищи. Параллельно с нарастание количества сока, увеличивается и его кислотность.

Переваривающая сила сока больше в первые часы. Для оценки переваривающей силы сока предложен метод Мента . Жирная пища угнетает желудочную секрецию, по этому не рекомендуется прием жирной пищи в начале еды. Отсюда никогда не дают детям рыбий жир до начала еды. Прием жиров предварительный - снижает всасывание алкоголя желудка.

Мясо - белковый продукт, хлеб - растительный и молоко - смешанный .

На мясо - выделяется максимальное количество сока с Максимум секреции на второй час. Сок обладает максимальной кислотностью, ферментативность не высокая. Быстрое нарастание секреции обусловлено сильным рефлекторным раздражением - вид, запах. Затем, после максимума секреция начинает снижаться, спад секреции идет медленно. Высокое содержание соляной кислоты обеспечивает денатурацию белка. Окончательное расщепление идет в кишечнике.

Секреция на хлеб . Максимум достигается к 1ому часу. Быстрое нарастание связано с сильным рефлекторным раздражителем. Достигнув максимума секреция довольно быстро падает, т.к. мало гуморальных стимуляторов, но секреция длиться долго(до 10 часов). Ферментативная способность - высокая - кислотность нет.

Молоко - медленный подъем секреции . Слабое раздражение рецепторов. Содержат жиры, секрецию тормозят. Вторая фаза после достижения максимума характеризуется равномерным спадом. Здесь образуются продукты расщепления жиров, которые стимулируют секрецию. Ферментативная активность невысокая. Необходимо употреблять овощи, соки и минеральную воду.

Секреторная функция поджелудочной железы.

Химус, который поступает в 12 перстную кишку подвергаются действию поджелудочного сока, желчи и кишечного сока.

Поджелудочная железа - крупнейшая железа. Имеет двойную функцию - внтурисекреторную - инсулин и глюкагон и внешнесекреторная функция, которая обеспечивает выработку поджелудочного сока.

Поджелудочный сок образуется в железе, в ацинусе. Которые выстланы переходными клетками в 1 ряд. В этих клетках идет активный процесс образования ферментов. В них хорошо выражена эндоплазматчиеская сеть, Аппарат Гольджи и от ацинусов начинаются протоки поджелудочной железы и образуют 2 протока, открывающихся в 12 перстную кишку. Самый крупный проток - проток Вирсунга . Он открывается вмстес общим желчным протоком в области Фатерова соска. Здесь находится сфинктер Одди. Второй добавочный проток - Санторинни открывается проксимальнее Версунгова протока. Изучение - наложение фистул на 1 из протоков. У человека изучается методом зондирования.

По своему составу поджелудочный сок - прозрачная бесцветная жидкость щелочной реакции. Количество 1-1,5 л за сутки, pН 7,8-8,4. Ионный состав калия и натрия такой же как в плазме, но больше ионов бикарбоната, а Сl меньше. В ацинусе содержание такое же, но по мере движения сока по протокам приводит к тому, что клетки протока обеспечивают захватывание анионов хлора и количество анионов бикарбоната увеличивается. Поджелудочный сок богат по ферментному составу.

Протеолитические ферменты, действующие на белки - эндопептидазы и экзопептидазы. Разница в том, что эндопептидазы действуют на внутренние связи, а экзопептидазы отщепляют концевые аминокислоты.

Эндопепидазы - трипсин, химотрипсин, эластазы

Эктопептидазы - карбоксипептидазы и аминопептидазы

Протеолитические ферменты вырабатываются в неактивной форме - проферменты. Активация происходит под действием энтерокиназы. Она активирует трипсин. Трипсин выделяется в форм трипсиногена. А активная форма трипсина активирует остальные. Энтерокиназа - фермент кишечного сока. При закупорках протока железы и при обильном употреблении алкоголем может наступит активация ферментов поджелудочной железы внутри нее. Начинается процесс самопереваривания поджелудочной железы - острый панкреатит.

На углеводы действуют аминолитические ферменты -альфаамилаза, расщепляет полисаахриды, крахмал, гликоген, не может расщеплять целюлоу, с образованием мальтоыз, мальтотиозы, и декстрина.

Жировые литолитические ферменты - липаза, фосфолипаза А2, холестерин. Липаза действует на нейтральные жиры и расщепляет их до жирных кислот и глицерина, холистеринэстераза действует на холестерин, а фосфолипаза на фосфолипиды.

Ферменты на нуклеиновые кислоты - рибонуклеаза, дезоксирибонуклеаза.

Регуляция поджелудочной железы и ее секреции .

Она связана с нервными и гуморальными механизмами регуляции и происходит включение поджелудочной железы в 3 фазы

  • Сложно рефлекторную
  • Желудочную
  • Кишечную

Секреторный нерв - блуждающий нерв , который действует на выработку ферментов в клетке ацинусов и на клетки протоков. Влияние симпатических нервов на поджелудочную нет, но симпатические нервы вызывают снижение кровотока, и происходит уменьшение секреции.

Большое значение имеет гуморальная регуляция поджелудочной железы - образование 2х гормонов слизистой оболочки. В слизистой оболочке есть С клетки, которые вырабатывают гормон секретин и секретин всасываясь в кровь он действует на клетки протоков поджелудочной железы. Стимулирует эти клетки действие соляной кислоты

2ой гормон вырабатывается I клетками - холецистокинин . В отличи от секретина действует на клетки ацинуса, количество сока будет меньше, но сок богат ферментами и возбуждение клеток типа I идет под действием аминокислот и в меньшей степени соляной кислоты. Другие гормоны действуют на поджелудочную железу - ВИП - оказывает действие, похожее с секретином. Гастрин сходен с холецистокинином. В сложнорефлекторную фазу секрецию выделяется 20 % ее объема, 5-10% приходится на желудочную,а остальное на кишечную фазу и т.к. поджелудочная железа находится на следующем этапе воздействия на пищу, выработка желудочного сока очень тесно взаимодействует с желудком. Если развивается гастрит, то вслед за ним идет панкреатит.

Физиология печени.

Печень является самым крупным органом. Вес у взрослого человека составляет 2,5% от общего веса тела. За 1 минуту печень получает 1350 мл крови и это составляет 27% минутного объема. Печень получает и артериальную и венозную кровь.

1. Артериальный кровоток - 400 мл в минуту. Артериальная кровь поступает через печеночную артерию.

2. Венозный кровоток - 1500 мл в минуту. Венозная кровь поступает по воротной вене от желудка, тонкой кишки, поджелудочной железы, селезенки и частично толстой кишки. Именно по воротной вене поступают питательные вещества и витамины из пищеварительного тракта. Печень захватывает эти вещества и затем распределяет их по другим органам.

Важная роль печени принадлежит углеродному обмену. Она поддерживает уровень сахара в крови, являясь депо гликогена. Регулирует содержание липидов в крови и особенно липоппротеинов с низкой плотностью, которые она секретирует. Важная роль в белковом отделе. Все белки плазмы образуются в печени.

Печень выполняет обезвреживающую функцию по отношению к токсическим вещества и лекарственным препаратам.

Выполняет секреторную функцию - образование печенью желчью и выведение желчных пигментов, холестерина, лекарственных веществ. Осуществляет эндокринную функцию.

Функциональной единицей печени является печеночная долька , которая построена из печеночных балок, образованных гепатоцитами. В центре печеночной дольки - центральная вена, в которую оттекает кровь из синусоидов. Собирает кровь от капилляров воротной вены и капилляров печеночной артерии. Центральные вены сливаясь друг с другом постепенно формируют венозную систему оттока крови из печени. И кровь из печени оттекает по печеночной вене, которая впадает в нижнюю полую вену. В печеночных балках при контакте соседних гепатоцитов образуются желчные канальцы. Они отделяются от межклеточной жидкости плотными контактами, Это препятствует смешиванию желчи и внеклеточной жидкости. Образующаяся гепатоцитами желчь поступает в канальцы, которые сливаясь постепенно формируют систему внутрипеченочных желчных протоков. В конечном итоге поступает в желчный пузырь или по общему протоку в 12перстную кишку. Общий желчный проток соединяется с Персунговым протоком поджелудочной железы и вместе м ним открывается на вершине Фатерова соска. У места выхода общего желчного протока имеется сфинктер Одди , котоырй и регулируют поступление желчи в 12 перстную кишку.

Синусоиды образованы эндотелиальными клетками, которые лежат на базальной мембране, вокруг - перисинусоидальное пространство - пространство Диссе . Это пространство отделяет синусоиды и гепатоциты. Мембраны гепатоцитов образуют многочисленные складки, ворсинки и они выступают в пересинусоидальнео пространство. Эти ворсинки увеличивают площадь соприкосновения с пересуносиадльной жидкостью. Слабая выраженность базальной мембраны, эндотелиальные клетки синусоида содержат крупные поры. Структура напоминает решето. Поры пропускают вещества от 100 до 500 нм в диаметре.

Количество белков в пересинусоидальном пространстве будет больше чем плазме. Имеются макроциты макрофагальной системы. Эти клетки путем эндоцитоза обеспечивают удаление бактерий, поврежденных эритроцитов, иммунных комплексов. Некоторые клетки синусоидов в цитоплазме может содержать капельки жира - клетки Ито . В них содержится витамин А. Эти клетки связаны с колагеновыми волокнами, по своим свойствам близки к фибробластам. Они развиваются при циррозе печени.

Продукция желчи гепатоцитами - печень вырабатывает за сутки 600-120 мл желчи. Желчь выполняет 2 важные функции -

1. Она необходима для переваривания и всасывании жиров. Благодаря наличию желчных кислот - желчь производит эмульгирование жира и превращение его в мелкие капли. Процесс будет способствовать лучшему действию липаз, для лучшего расщепления до жиров и желчных кислот. Желчь необходима для транспорта и всасывания продуктов расщепления

2. Экскреторная функция. С ней выводится билирубин, холестренин. Секреция желчи происходит в 2 стадии. Первичная желчь образуется в гепатоцитах, она содержит желчные соли, желчные пигменты, холестерин, фосфолипиды и белки, электролиты, которые по своему содержанию идентичны электролитам плазмы, кроме аниона бикарбоната , который в желчи содержится больше. Это и придает щелочную реакцию. Эта желчь и поступает из гепатоцитов в желчные канальцы. На следующем этапе происходит движение желчи по междольковым, долевым протоком, затем к печеночному и общему желчному протоку. По мере продвижения желчи, эпителиальные клетки протоков, секретируют анионы натрия и бикарбоната. Это уже по сути вторичная секреция. Объем желчи в протоках может увеличиваться на 100%. Секретин увеличивает секрецию бикарбоната для нейтрализации соляной кислоты из желудка.

Вне пищеварения желчь накапливается в желчном пузыре, куда она попадает через пузырный проток.

Секреция желчных кислот.

Клетки печени секретируют 0,6 кислот и их солей. Желчные кислоты образуются в печени из холестерина, который поступает в организм либо с пищей, либо может синтезироваться гепатоцитами в ходе солевого обмена. При добавление к стероидному ядру каарбоксильные и гидроксильных групп, образуются первичные желчные кислоты-

ü Холевая

ü Хенодезоксихолевая

Они соединяются с глицином, но в меньшей степени с таурином. Это приводит к образованию гликохолевых или таурохолевых кислот. При взаимодействии с катионами образуются соли натрия и калия. Первичные желчные кислоты поступают в кишечник и в кишечнике, кишечные бактерии превращают их во вторичные желчные кислоты

  • Дезоксихолевая
  • Литохолевая

Желчные соли обладают большей ионообразующей способность, чем сами кислоты. Желчные соли - полярные соединения, что снижает их проникновение через клеточную мембрану. Следовательно будет снижаться всасывание. Соединяясь с фосфолипидами и моноглицеридами желчные кислоты способствуют эмульгрованию жиров, повышают активность липазы и превращают продукты гидролиза жиров в растворимые соединения. Поскольку желчные соли содержат гидрофильные и гидрофобные группы они принимают участие в образовании с холестеринами, фосфолипидами и моноглицеридами образуют цилиндрические диски, которые будут водорастворимыми мицеллами. Именно в таких комплексах эти продукты и проходят через щеточную кайму энтероцитов. До 95% желчные соли и кислоты реабсорбируются в кишечнике. 5% будет выводится с каловыми массам.

Всосавшиеся желчные кислоты и их соли соединяются в крови с липопротеинами высокой плотности. По воротной вене они вновь поступают в печень, где на 80% снова захватываются из крови гепатоцитами. Благодаря такому механизму в организме создается запас желчных кислот и их солей, который составляет от 2 до 4г. Там совершается кишечно-печеночный кругооборот желчных кислот, который способствует всасыванию липидов в кишечнике. У людей, которые едят не много, такой оборот совершается 3-5 раз за сутки, а у людей обильно потребляющих пищу такой круговорот может возрастать до 14-16 раз за сутки.

Воспалительные состояния слизистой тонкой кишки уменьшают процессы всасывания желчных солей, это ухудшает всасывания жиров.

Холестерин - 1,6-8,№ ммол/л

Фосфолипиды - 0,3-11 ммол/л

Холестерин рассматривают как побочный продукт. Холестерин практически не растворим в чистой воде, но соединяясь с желчными солями в мицеллах он превращается в водорастворимое соединение. При некоторых патологических состояниях происходит осаждение холестерина, отложение в нем кальция и это вызывает образование желчных камней. Желчно-каменная болезнь - довольно распространенная болезнь.

  • Образованию желчных солей способствует избыточное всасывание воды в желчном пузыре.
  • Избыточное всасывание желчных кислот из желчи.
  • Увеличение холестерина в желчи.
  • Воспалительные процессы в слизистой желчного пузыря

Емкость желчного пузыря 30-60 мл. За 12 часов в желчном пузыре может накапливать до 450 мл желчи и это происходит благодаря процессу концентрирования, при этом всасывается вода, ионы натрия и хлора, другие электролиты и обычно желчь концентрируется в пузыре 5 раз, но максимальное концентрирование - 12-20 раз. Примерно половина растворимых соединений в пузырной желчи приходится на желчные соли, также здесь достигается высокая концентрация билирубина, холестерина и лейцитина, но электролитный состав идентичен плазме. Опорожнение желчного пузыря происходит во время переваривания пищи и особенно жира.

Процесс опорожнения желчного пузыря связан с гормоном холецистокинином. Он расслабляет сфинктер Одди и способствует расслаблению мускулатуры самого пузыря. Перестальтические сокращения пузыря дальше идут на пузырный проток, общий желчный проток, что приводит к выведению желчи из пузыря в 12перстную кишку. Экскреторная функция печени связана с выведением желчных пигментов.

Билирубин.

Моноцит - макрофагальная система в селезенке, костном мозге, печени. За сутки распадается 8 г гемоглобина. При распаде гемоглобина от него отщепляется 2хвалентное железо, которое соединяется с белком и откладывается про запас. Из 8 г Гемоглобин => биливердин =>билирубин(300мг в сутки) Норма билирубина в сыворотке крови 3-20 мкмол/л. Выше - желтуха, окрашивание склеры и слизистых оболочек ротовой полости.

Билирубин соединяется с транспортным белком альбумином крови. Это непрямой билирубин. Билирубин из плазмы крови захватывается гепатцоитами и в гепатоцитах билирубин соединяется с глюкуроновой кислотой. Образуется билирубин глюкуронил. Эта форма и поступает в желчные канальцы. И уже в желчи эта форма дает прямой билирубин . Он по системе желчных протоков поступает в кишечник В кишечнике кишечные бактерии отщепляют глюкуроновую кислоту и превращают билирубин в уробилиноген. Часть его подвергается окислению в кишечнике и попадает в каловые массы и называется уже стеркобилином. Другая часть будет подвергаться всасыванию и попадать в кровь. Из крови захватывается гепатоцитами и опять попадает в желчь, но часть будет фильтроваться в почках. Уробилиноген попадает в мочу.

Надпечёночная (гемолитическая) желтуха вызвана массивным распадом эритроцитов в результате резус-конфликта, попадания в кровь веществ, вызывающих разрушение мембран эритроцитов и некоторых других заболеваниях. При этой форме желтухи в крови повышено содержание непрямого билирубина, в моче повышено содержание стеркобилина, билирубин отсутствует, в кале повышено содержание стеркобилина.

Печёночная (паренхиматозная) желтуха вызвана повреждением клеток печени при инфекциях и интоксикациях. При этой форме желтухи в крови повышено содержание непрямого и прямого билирубина, в моче повышено содержание уробилина, присутствует билирубин, в кале понижено содержание стеркобилина.

Подпечёночная (обтурационная) желтуха вызвана нарушением оттока желчи, например, при закупорке желчевыводящего протока камнем. При этой форме желтухи в крови повышено содержание прямого билирубина (иногда и непрямого), в моче отсутствует стеркобилин, присутствует билирубин, в кале понижено содержание стеркобилина.

Регуляция желчеобразования.

Регуляция строится по механизмам обратной связи на основе уровня концентрации желчных солей. Содержание в крови определяет активность гепатоцитов в продукции желчи. Вне периода пищеварения концентрация желчных кислот понижается и это является сигналом для усиления образования и гепатоцитов. Выделение в проток же будет уменьшаться. После приема пищи, происходит повышение содержания желчны кислот в крови, что с одной стороны тормозит образование в гепатоцитах, но одновременно усиливает выделение желчных кислот в канальцах.

Холецистокинин вырабатывается под действуем жирных и аминокислот и вызывает сокращение пузыря и расслабления сфинктера - т.е. стимуляция опорожнения пузыря. Секретин, который выделяется при действии соляной кислоты на С клетки усиливает канальцевую секрецию и увеличивает содержание бикарбоната.

Гастрин влияет на гепатоциты усиливая и секреторные процессы. Косвенно гастрин увеличивает содержание соляной кислоты, которая повысит затем содержание секретина.

Стероидные гормоны - эстрогены и некоторые андрогены тормозят образование желчи. В слизистой оболочке тонкой кишки вырабатывается мотилин - он способствует сокращению желчного пузыря и выведению желчи.

Влияние нервной системы - через блуждающий нерв - усиливает желчеобразование и блуждающий нерв способствует сокращению желчного пузыря. Симпатические влияния носят тормозящий характер и вызывает расслабление желчного пузыря.

Кишечное пищеварение.

В тонкой кишке - окончательное переваривание и всасывание продуктов пищеварения. В тонкую кишку ежедневно поступает 9 л. Жидкости. 2 л воды мы поглощаем с пищей, а 7 л поступает за счет секреторной функции ЖКТ и из этого количество только 1-2 л будет поступать в толстую кишку. Длина тонкой кишки до илеоцекального сфинктера, 2,85 м. У трупа - 7 м.

Слизистая оболочка тонкой кишки образует складки, которые увеличивают поверхность в 3 раза. 20-40 ворсинок на 1 кв.мм. Это увеличивает площадь слизистой в 8-10 раз, а каждая ворсинка покрыта эпителиоцитами, эндотелиоцитами, содержащими на себе микроворсинки. Это цилиндрические клетки, на поверхности которых имеются микроворсинки. От 1,5 до 3000 на 1 клетке.

Длина ворсинки 0,5-1 мм. Наличие микроворсинок увеличивает площадь слизистой и она достигает 500 кв.м Каждая ворсинка содержит слепо заканчивающийся капилляр, к ворсинке подходит питающая артериола, которая распадается на капилляры, переходящие на вершине в венозные капилляры и производят отток крови по венулам. Кровоток венозный и артериальный в противоположных стороны. Поворотно-противоточная системы. При этом большое количество кислорода переходит из артериальной а венозную кровь, не достигая вершины ворсинки. Очень легко могут создаться условия, при которых вершины ворсинок будут недополучать кислород. Это может привести к гибели этих участков.

Железистый аппарат - брунеровские железы в 12персной кишке. Либертюновы железы в тощей и подвздошной кишке. Имеются бокаловидные слизистые клетки, которые вырабатывают слизь. Железы 12 перстной кишки напоминают железы пилорической части желудка и они выделяют слизистый секрет на механическое и химическое раздражение.

Их регуляция происходит под действием блуждающих нервов и гормонов , особенно секретина. Слизистый секрет защищает 12перстную кишку от действия соляной кислоты. Симпатическая система уменьшает образование слизи. Когда мы испытываем стрем, у нас есть легкая возможность получить язву 12 перстной кишки. За счет снижения защитных свойств.

Секрет тонкой кишки образуется энтероцитами, которые начинают свое созревание в криптах. По мере созревания энтероцит начинают продвигать к вершине ворсинки. Именно в криптах осуществляется активный перенос клетками анионов хлора и бикарбоната. Эти анионы создают отрицательный заряд, который притягивает натрий. Создается осмотическое давление, что притягивает воду. Некоторые патогенны микробы - дизентирийная палочка, холерный вибрион усиливают транспорт ионов хлора. Это приводит к большому выделения жидкости в кишечнике до 15 л в сутки. В норме 1,8-2 л за сутки. Кишечный сок - бесцветная жидкость, мутноватая за счет слизи эпителаиальных клеток, имеет щелочную реакцию pН 7,5-8. Ферменты кишечного сока накапливаются внутри энтероцитов и выделяются вместе с ними при их отторжении.

Кишечный сок содержит комплекс пептидаз, который называют эриксином, обеспечивающим окончательно расщепление продуктов белка до аминокислот.

4 аминолитических фермента - сахараза, мальтаза, изомальтаза и лактаза. Эти ферменты расщепляют углевод до моносахаридов. Имеется кишечная липаза, фосфолипаза, щелочная фосфотаза и энтерокиназа.

Ферменты кишечного сока.

1. Комплекс пептидаз(эрипсин)

2. Амилолетические ферменты - сахараза, мальтаза, изомальтаза, лактаза

3. Кишечная липаза

4. Фосфолипаза

5. Щелочная фосфотаза

6. Энтерокиназа

Эти ферменты накапливаются внутри энтероциты и последние по мере созревания поднимаются на вершину ворсинок. На вершине ворсинки происходит отторжение энтероцитов. В течении 2-5 дней кишечный эпителий полностью заменяется на новые клетки. Ферменты могут поступить в полость кишки - полостное пищеварение, другая часть фиксируется на мембранах микроворсинок и обеспечивает мембранное или пристеночное пищеварение.

Энтероциты покрыты слоем гликокаликса - углеродная поверхность, пористая. Это каталихатор, который способствует расщеплению питательных веществ.

Регуляция кислотного отделения идет под действием механических и химических раздражителей, действующих на клетки нервных сплетений. Клетки Доггеля.

Гуморальные вещества - (увеличивают секрецию) - секретин, холецистокинин, ВИП, мотилин и энтерокринин.

Соматостатин угнетает секрецию.

В толстой кишке либертюновые железы, большое количество слизистых клеток. Преобладает слизь и анионы бикарбоната.

Парасимпатические влияния - увеличивают секрецию слизи. При эмоциональном возбуждении в течении 30 минут образуется большое количество секрета в толстой кишке, что вызывает позыв опорожнения. В нормальных условиях - слизь обеспечивает защиту, склеивание каловых масс и нейтрализует кислоты с помощью анионов бикарбоната.

Очень большое значение для функции толстой кишки имеет нормальная микрофлора. Именно не патогенные бактерии принимают участие в формировании иммунобиологической активности организма - лактобактерии. Они способствуют повышению иммунитета и препятствуют развитию патогенной микрофлоры, при приеме антибиотиков эти бактерии погибают. Ослабляются защитные силы организма.

Бактерии толстой кишки синтезируют витамин К и витамины группы Б .

Ферменты бактерий расщепляют клетчатку путем микробного брожения. Этот процесс идет с образованием газа. Бактерии могут вызывать гниение белка. При этом в толстой кишке образуются ядовитые продукты - индол, скатол, ароматические оксикислоты, фенол, аммиак и сероводород.

Обезвреживание ядовитых продуктов происходит в печени, где они соединяются с глюкурновой кислотой. Происходит всасывание воды и формирование каловых масс.

В состав кала входит слизь, остатки отмершего эпителия, холестерин, продукты изменения желчных пигментов - стеркобилин и мертвые бактерии, на долю которых приходится 30-40 %. Каловые массы могут содержать не переваренные остатки пищи.

Моторная функция пищеварительного тракта.

Моторная функция нам необходима на 1ой стадии - поглощения пищи и пережевывания, глотания, передвижения по пищеварительному каналу. Моторика способствует смешиванию пищи и секрета желез, участвует в процессах всасывания. Моторика осуществляет выведение конечных продуктов пищеварения.

Изучение моторной функции ЖКТ производят с использованием разных методов, но широк распространена баллонная кинеграфия - введение в полость пищеварительного канала баллончика соединенного с регистрирующим устройством, при этом измеряется давление, которое отражает моторику. Моторную функцию можно наблюдать при рентгеноскопии, колоноскопии.

Ренгеногастроскопия - метод регистрации электрических потенциалов, возникающих в желудке. В экспериментальных условиях снимают регистрацию с изолированных участков кишки, визуальное наблюдение за двигательной функцией. В клинической практике - аускультация - выслушивания в брюшной полости.

Жевание - при жевании пища измельчается, перетирается. Хотя этот процесс является произвольным жевании координируется нервными центрами мозгового ствола, которые обеспечивают движение нижней челюсти по отношению к верхней. Когда рот открывается проприорецепторы мышц нижней челюсти возбуждаются и рефлекторно вызывают сокращение жевательной мышцы, медиальной крыловидной и височной, способствует закрытию рта.

При закрытом рте пища раздражает рецепторы слизистой полости рта. Которые при раздражения посылают к дву брюшной мышце и латеральной крыловидной , которые способствуют открытию рта. Когда челюсть опускается цикл повторяется снова. При снижении тонуса жевательных мышц нижняя челюсть под силой тяжести челюсть может опускаться.

В акте жевания участвуют мышцы языка . Они помещают пищу между верхними и нижними зубами.

Основные функции жевания -

Разрушают целлюлозную оболочку фруктов и овощей, способствуют смешиванию и смачиванию пищи слюной, улучшает контакт с вкусовыми рецепторами, увеличивает площадь соприкосновения с пищеварительными ферментами.

Жевание освобождает запахи, которые действуют на обонятельные рецепторы. Это повышает удовольствие от еды и стимулирует желудочную секрецию. Жевание способствует формированию пищевого комка и его проглатыванию.

Процесс жевания сменяется актом глотания . 600 раз мы глотаем за сутки - 200 глотаний при еде и питье, 350 без пищи и еще 50 ночью.

Это сложный координированный акт. Включает ротовую, глоточную и пищеводную фазу . Выделяют произвольную фазу - до попадания пищевого комка на корень языка. Это произвольная фаза, которую мы можем прекратить. Когда пищевой комок попадает на корень языка наступает не произвольная фаза глотания . Акт глотания начинается с корня языка к твердому небу. Пищевой комок передвигается на корень языка. Небная занавеска поднимается, как комок проходит небные дужки, закрывается носоглотка, гортань поднимается - надгортанник опускается, голосовая щель опускается, это препятствует попаданию пищи в дыхательные пути.

Пищевой комок идет в глотку. За счет мышц глотки осуществляется перемещение пищевого комка. У входа в пищевод находится верхний сфинктер пищевода. При движении комка происходит расслабление сфинктера.

В рефлексе глотания принимают участие чувствительные волокна тройничного, языкоглоточного, лицевого и блуждающего нерва. Именно по эти волокнам передаются сигналы к продолговатому мозгу. Координированное сокращение мышц обеспечивается теми же нервами + подъязычный нерв. Именно координированное сокращение мышц направляет пищевой комок в пищевод.

При сокращении глотки - расслабление верхнего сфинктера пищевода. При попадание пищевого комка в пищевод начинается пищеводная фаза .

В пищеводе имеется циркулярный и продольный слой мышц. Перемещение комка с помощью перистальтической волны, при которой циркулярные мышцы над пищевым комком, а продольны спереди. Циркулярные мышцы суживают просвет, а продольные расширяют. Волна передвигает пищевой комок со скоростью 2-6 см в с.

Твердая пища проходит пищевод за 8-9 секунд.

Жидкая вызывает расслабление мышц пищевод и жидкость идет сплошным столбом за 1 - 2 с. Когда пищевой комок достигает нижней трети пищевода, это вызывает расслабление нижнего кардиального сфинктера. Кардиальный сфинктер находится в тонусе в покое. Давление - 10-15 мм.рт. ст.

Расслабление происходит рефлекторно с участием блуждающего нерва и медиаторами, которые вызывают расслабление - вазоинтестинальный пептид и оксид азота.

При расслаблении сфинктера пищевой комок проходит в желудок. С работой кардиального сфинктера возникают 3 неприятных нарушения - ахалозия - возникает при спастическом сокращении сфинктеров и слабой перистальтики пищевода, что приводит к расширению пищевода. Пища застаивается, подвергается распаду, появляется неприятный запах. Это состояние развивается не так часто, как недостаточность сфинктера и состояние рефлюкса - забрасывание желудочного содержимого в пищевод. Это приводит к раздражению слизистой пищевода, появляется изжога.

Аэрофагия - заглатывание воздуха. Оно характерно для детей грудного возраста. При сосании происходит заглатывание воздуха. Ребенка нельзя сразу положить горизонтально. У взрослого человека наблюдается при поспешной еде.

Вне периода пищеварения гладкие мышцы находятся в состоянии тетанического сокращения. Во время акта глотания происходит расслабление проксимального отдела желудка. Вместе с открытием кардиального сфинктера кардиальный отдел расслабляется. Снижение тонуса-рецептивное расслабление. Снижение тонуса мышц желудка позволяет вместить большие объемы пищи при минимальном давлении полости. Рецептивное расслабление мышц желудка регулируется блуждающим нервом .

В расслаблении мускулатуры желудка участвует хоелцистокинин - способствует релаксации. Моторная активность желудка в проксимальном и дистальном отелах натощак и после еды выражена по разному.

В состоянии натощак сократительная активность проксимального отдела - слабая, редкая и электрическая активность гладких мышц не велика. Большая часть мышц желудка натощак не сокращается, но приблизительно каждые 90 минут в средних отделах желудка развивается сильная сократительная активность, которая длится 3-5 минут. Эта периодическая моторика получила название мигрирующий миоэлектрический комплекс - ММК , который развивается в средних отделах желудка и затем переходит дальше на кишечник. Считают, что он способствует очистки ЖКТ от слизи, отслоившихся клеток, бактерий. Субъективно мы с вами ощущаем возникновение этих сокращение в форме подсасывания, журчания в животе. Эти сигналы усиливают чувство голода.

Для ЖКТ натощак характерна периодическая моторная активность и она связана с возбуждением центра голода в гипоталамусе. Снижается уровень глюкозы, повышается содержание кальция, появляются холиноподобные вещества. Это все действует на центр голода. От него сигналы поступают в кору головного мозга и то дает нам осознать, что мы голодны. По нисходящим путям - периодическая моторика ЖКТ. Эта длительная активность - дает сигналы, что пора поесть. Если мы в этом состоянии принимаем пищу, то этот комплекс заменяется более частыми сокращениями в желудке, которые возникают в теле и не распространяются к пилорическому отделу.

Основным типом сокращения желудка в период пищеварения - перистальтические сокращения - сокращение циркулярных и продольных мышц. Кроме перистальтических есть тонические сокращения.

Основной ритм перильстальтики - 3 сокращения в минуту. Скорость 0,5-4см в секунду. Содержимое желудка продвигается к пилорическому сфинктеру. Небольшая часть проталкивается через пищеварительный сфинктер, но при достижении пилорического отдела здесь происходит мощной сокращение, которое отбрасывает остальную часть содержимого обратно в тело - ретропульсация . Она играет очень важную роль в процессах перемешивания, змельчения пищевого комка, до более мелких частиц.

В 12-перстную кишку могут прозодить частицы пищи не более 2 куб мм.

Изучение миоэлектрчиеской активности показало что в гладких мышцах желудка возникает медленные электрические волны которые отражают деполяризацию и реполяризацию мышц. Сами волны не приводят к сокращению. Сокращения возникают, когда медленная волна достигает критического уровня деполяризации. На вершине волны появляется потенциал действия.

Наиболее чувствительным отделом является средняя треть желудка, где эти волны достигают порогового значения - водители ритма желудка. Он и создает нам основной ритм - 3 волны в минуту. В проксимальном отделе желудка таких изменений не происходит. Молекулярной основы изучены не достаточно, но такие изменения связывают с увеличением проницаемости для ионов натрия, а также повышения концентрации ионов кальция в гладкомышечных клетках.

Обнаружены в стенках желудка не мышечные клетки, которые возбуждаются периодически - клетки Кайяла Эти клетки связаны с гладкомышечными. Эвакуация желудка в 12 перстную кишку. Важным является измельчение. На эвакуацию влияет объем желудочного содержимого, химический состав, калорийность и консистенция пищи, степени ее кислотности. Жидкая пища усваивается быстрее твердой.

При попадании части желудочного содержимого в 12 перстную кишку со стороны последней возникает запирательный рефлекс - рефлекторно закрывается пилорический сфинктер, дальнейшее поступлении из желудка не возможно, моторика желудка тормозится.

Моторика тормозится при переваривании жирной пищи. В желудке сокращается функциональный препилорический сфинктер - на границе тела и пищеварительной части. Происходит объединение пищеварительного отдела и 12престной кишки.

Тормозится за счет образования энтерогастронов.

Быстрый переход содержимого желудка в кишечник сопровождается неприятными ощущениями, резкой слабости, сонливости, головокружений. Это возникает при частичном удалении желудка.

Моторная деятельность тонкой кишки.

Гладкие мышцы тонкой кишки в состоянии натощак могут также сокращаться в связи с появлением миоэлектрического комплекса. Каждые 90 минут. После приема пищи мигрирующий миоэлектрчиеский комплекс заменяется на моторику, которая характерна для пищеварения.

В тонкой кишке могут наблюдаться двигательная активность в форме ритмической сегментации. Сокращение циркулярных мышц приводит к сегментированию кишки. Происходит смена сокращающихся сегментов. Сегментация нужная для перемешивания пищи, если к сокращению циркулярных мышц(суживают просвет) добавляются продольные сокращения. От циркулярных мышц - движение содержимого маскообразное - в разные стороны

Сегментация возникает примерно каждые 5 секунд. Это локальный процесс. Захватывает сегменты на расстоянии 1-4 см. В тонкой кишке наблюдаются и перистальтические сокращения, которые вызывают перемещение содержимого, по направлению к илеоцекальному сфинктеру. Сокращение кишки возникает в форме перистальтических волн, которые возникают каждые 5 секунд - кратно 5 - 5.10,15, 20 секунд.

Сокращение в проксимальных отделах более часто, до 9-12 в минуту.

В дистальных отелах 5 - 8. Регуляция моторики тонкой кишки стимулируется парасимпатической системой и подавляется симпатической. Местные сплетения, которые могут регулировать моторику на небольших участках тонкой кишки.

Расслабление мышц - участвуют гуморальные вещества - ВИП, оксид азота. Серотонин, метионин, гастрин, окситоцин, желчь - стимулируют моторику.

Рефлекторные реакции возникают при раздражение продуктами переваривания пищи и механическими раздражителями .

Переход содержимого тонкой кишки в толстую осуществляется через илеоцекальный сфинктер. Этот сфинктер вне периода пищеварения закрыт. После приема пищи, каждые 20 - 30 секунд происходит его открытие. До 15 миллилитров содержимого из тонкой кишки поступает в слепую.

Повышение давления в слепой кишки рефлекторно закрывает сфинктер. Осуществляется периодическая эвакуация содержимого тонкой кишки в толстую. Наполнение желудка - вызывает открытие илеоцеклального сфинктера.

Толстая кишка отличается тем, что продольные мышечные волокна идут не сплошным слоем, а отдельными лентами. Толстая кишка образует мешкообразное расширение - гаустры . Это расширение, которое формируется при расширении гладких мышц и слизистой оболочки.

В толстой кишке мы наблюдаем те же процессы, только более медленно. Там имеется сегментация, маяткникообразные сокращения. Волны могут распространяться и к прямой кишке и обратно. Содержимое медленно передвигается в одном, а затем в другом направлении. В течение дня 1-3 раза наблюдаются форсирующее перистальтические волны которые продвигают содержимое к прямой кишке.

Регуляция моторки осуществляется парасимпатическими(возбуждают) и симпатчиескими(тормозят) влияниями. Слепая, поперечная, восходящая - блуждающий нерв. Нисходящая, сигмовидная и прямая - тазовый нерв. Симпатическая - верхний и нижний брыжеечный узел и подчревное сплетение. Из гуморальных стимуляторов - вещество P, тахикинины. ВИП, Оксид азота - тормозят.

Акт дефекации.

Прямая кишка в обычных условиях пуста. Наполнение прямой кишки возникает при прохождении и форсировании волны перистальтики. Когда каловые массы попадают в прямую кишку, вызывают растяжение более чем на 25 % и давление выше 18 мм.рт.ст. происходит расслабление внутреннего гладкомышечного сфинктера.

Чувствительные рецепторы информируют центральную нервную систему, вызывая позыв. Контролируется еще наружным сфинктером прямой кишки - поперечнополосатые мышц, регулируется произвольно, иннервация - срамной нерв. Сокращение наружного сфинктера - подавление рефлекса, каловые массы уходят проксимально. Если акт возможен, происходит расслаблении и внутреннего и наружного сфинктера. Продольные мышцы прямой кишки сокращаются, диафрагма расслабляется. Акту способствует сокращение грудных мышц, мышц брюшной стенки и мышцы поднимающей задний проход.

Пищеварение является начальным этапом обмена веществ. Человек получает с пищей энергию и все необходимые вещества для обновления и роста тканей, однако, содержащиеся в пище белки, жиры и углеводы являются для организма чужеродными веществами и не могут быть усвоены его клетками. Для усвоения они должны из сложных, крупномолекулярных и нерастворимых в воде соединений превратиться в более мелкие молекулы, растворимые в воде и лишенные специфичности.

Пищеварение - это процесс превращения пищевых веществ в форму, доступную для усвоения тканями, осуществляемый в пищеварительной системе.

Пищеварительная система - система органов, в которой происходит переваривание пищи, всасывание переработанных и выделение непереваренных веществ. Она включает пищеварительный тракт и пищеварительные железы

Пищеварительный тракт состоит из следующих отделов: ротовая полость, глотка, пищевод, желудок, двенадцатиперстная кишка, тонкий кишечник, толстый кишечник (рис.1).

Пищеварительные железы располагаются по ходу пищеварительного тракта и вырабатывают пищеварительные соки (слюнные, желудочные железы, поджелудочная железа, печень, кишечные железы).

В пищеварительной системе пища подвергается физическим и химическим превращениям.

Физические изменения пищи - заключаются в ее механической обработке, размельчении, перемешивании и растворении.

Химические изменения - это ряд последовательных этапов гидролитического расщепления белков, жиров, углеводов.

В результате пищеварения образуются продукты переваривания, которые способны всасываться слизистой оболочкой пищеварительного тракта и поступать в кровь и лимфу , т.е. в жидкие среды организма, и затем усваиваться клетками организма.

Основные функции пищеварительной системы:

- Секреторная - обеспечивает выработку пищеварительных соков, содержащих ферменты. Слюнные железы вырабатывают слюну, желудочные железы - желудочный сок, поджелудочная железа - поджелудочный сок, печень - желчь, кишечные железы - кишечный сок. Всего за сутки вырабатывается около 8,5 л. соков. Ферменты пищеварительных соков обладают большой специфичностью - каждый фермент действует на определенное химическое соединение.

Ферменты являются белками и для их деятельности необходимы определенная температура, рН среды и др. Различают три основные группы пищеварительных ферментов: протеазы, расщепляющие белки до аминокислот ; липазы , расщепляющие жиры до глицерина и жирных кислот; амилазы , расщепляющие углеводы до моносахаров. В клетках пищеварительных желез присутсвует полный набор ферментов - конститутивные ферменты, соотношение между которыми может изменяться в зависимости от характера пищи. При поступлении специфического субстрата могут появляться адаптированные (индуцированные) ферменты с узкой направленностью действия.


- Моторно-эвакуаторная - это двигательная функция, осуществляемая мускулатурой пищеварительного аппарата и обеспечивающая изменение агрегатного состояния пищи, ее измельчение, перемешивание с пищеварительными соками и передвижение в орально-анальном направлении (сверху вниз).

- Всасывательная - эта функция осуществляет перенос конечных продуктов переваривания, воды, солей и витаминов, через слизистую оболочку пищеварительного тракта во внутреннюю среду организма.

- Экскреторная - это выделительная функция, обеспечивающая выделения из организма продуктов обмена (метаболитов), неусвоенной пищи и др.

- Инкреторная - заключается в том, что специфические клетки слизистой оболочки пищеварительного тракта и поджелудочной железы, выделяют гормоны, регулирующие пищеварение.

- Рецепторная (анализаторная )- обусловлена рефлекторной связью (через рефлекторные дуги) хемо- и механорецепторов внутренних поверхностей органов пищеварения с сердечно-сосудистой, выделительной и др. системами организма.

- Защитная - это барьерная функция, обеспечивающая защиту организма от вредных факторов (бактерицидное, бактериостатическое, дезинтоксикационное действие).

Для человека характерен собственный тип пищеварения , подразделяющийся на три вида:

- внутриклеточное пищеварение - филогенетически наиболее древний тип, при котором ферменты гидролизуют мельчайшие частицы пищевых веществ, поступивших в клетку, путем мембранных транспортных механизмов.

- внеклеточное, дистантное или полостное - происходит в полостях пищеварительного тракта под действием гидролитических ферментов, причем секреторные клетки пищеварительных желез находятся на некотором отдалении. В результате внеклеточного пищеварения пищевые вещества распадаются до размеров, доступных для внутриклеточного пищеварения.

- мембранное, пристеночное или контактное - происходит непосредственно на клеточных мембранах слизистой оболочки кишечника.

Строение и функции органов пищеварения

Ротовая полость

Ротовая полость - в ее состав входят язык, зубы, слюнные железы. Здесь осуществляется прием пищи, анализ, размельчение, смачивание слюной, и химическая обработка. Пища находится в полости рта в среднем 10-15 сек.

Язык - мышечный орган, покрытый слизистой оболочкой, состоящей из множества сосочков 4-х типов. Различают нитевидные и конусовидные сосочки общей чувствительности (прикосновение, температура, боль); а также листовидные и грибовидны е, которые содержат вкусовые нервные окончания. Кончик языка воспринимает сладкое, тело языка - кислое и соленое, корень - горькое .

Вкусовые ощущения воспринимаются, если анализируемое вещество растворено в слюне. Утром язык мало чувствителен к восприятию вкуса, усиливается чувствительность к вечеру (19-21ч.). Поэтому на завтрак следует включать продукты, усиливающие раздражение вкусовых рецепторов (салаты, закуски, фрукты и др.). Оптимальная температура для восприятия вкусовых ощущений 35-40 0 С. Чувствительность рецепторов падает в процессе еды, при однообразном питании, принятии холодной пищи, а также с возрастом. Установлено, что сладкая пища вызывает ощущение удовольствия, благоприятно влияет на настроение, в то время как кислая может оказывать обратное действие.

Зубы . В ротовой полости у взрослого человека всего 32 зуба - 8 резцов, 4 клыка, 8 малых и 12 больших коренных зубов. Передние зубы (резцы) откусывают пищу, клыки разрывают ее, коренные зубы разжевывают с помощью жевательных мышц. Зубы начинают прорезываться на седьмом месяце жизни, к году обычно появляется 8 зубов (все резцы). При рахите прорезывание зубов задерживается. У детей к 7-9 годам молочные зубы (всего их 20) меняются на постоянные.

Зуб состоит из коронки, шейки и корня. Зубная полость заполнена пульпой - соединительной тканью, пронизанной нервами и кровеносными сосудами. Основу зуба составляет дентин - костная ткань. Коронка зуба покрыта эмалью, а корни зубным цементом .

Тщательное пережевывание пищи зубами увеличивает ее контакт со слюной, высвобождает вкусовые и бактерицидные вещества и облегчает проглатывание пищевого комка.

Слюнные железы - в слизистой оболочке полости рта имеется большое количество мелких слюнных желез (губные, щечные, язычные, небные). Кроме того, в полость рта открываются выводные протоки трех пар крупных слюнных желез - околоушных, подъязычных и подчелюстных.

Слюна примернона 98,5% состоит из воды и на 1,5% из неорганических и органических веществ. Реакция слюны слабощелочная (рН около 7,5).

Неорганические вещества - Na, K, Ca, Mg, хлориды , фосфаты , азотистые соли, NH 3 и др. Из слюны кальций и фосфор проникают в эмаль зуба.

Органические вещества слюны главным образом представлены муцином, ферментами и антибактериальными веществами.

Муцин - мукопротеин, который придает слюне вязкость, склеивает пищевой комок, делая его скользким и легко проглатываемым.

Ферменты слюны представлены амилазой , расщепляющей крахмал до мальтозы и мальтазой, расщепляющей мальтозу до глюкозы. Эти ферменты высокоактивные, но вследствие непродолжительного нахождения пищи в ротовой полости полного расщепления этих углеводов не происходит.

Антибактериальные вещества - ферментоподобные вещества лизоцим, ингибины и сиаловые кислоты, которые обладают бактерицидными свойствами и защищают организм от микробов, поступающих с пищей и вдыхаемым воздухом.

Слюна смачивает пищу, растворяет ее, обволакивает твердые компоненты, облегчает проглатывание, частично расщепляет углеводы, нейтрализует вредные вещества, очищает зубы от остатков пищи.

За сутки у человека выделяется около 1,5 л слюны. Секреция слюны происходит непрерывно, но больше в дневное время. Слюноотделение возрастает при ощущении голода, виде и запахе пищи, во время приема пищи, особенно сухой, при воздействии вкусоароматических и экстрактивных веществ, при употреблении холодных напитков, при устной речи, письме, разговоре о пище, а также мысли о ней. Тормозит секрецию слюны, непривлекательная пища и обстановка, напряженная физическая и умственная работа, отрицательные эмоции и др.

Влияние пищевых факторов на функции ротовой полости .

Недостаточное поступление белков, фосфора, кальция, витаминов С, D, группы В и избыток сахара приводят к развитию кариеса зубов. Некоторые пищевые кислоты, например виннокаменная, а также соли кальция и других катионов, могут образовывать зубные камни. Резкая смена горячей и холодной пищи приводит к появлению микротрещин эмали зубов и развитию кариеса.

Дефицит в питании витаминов группы В, особенно В 2 (рибофлавин), способствует появлению трещин в углах рта, воспалении слизистой оболочки языка. Недостаточное поступление витамина А (ретинол) характеризуется ороговением слизистых оболочек ротовой полости, появлением трещин и их инфицированием. При дефиците витаминов С (аскорбиновая кислота) и Р (рутин) развивается парадонтоз , что приводит к ослаблению фиксации зубов в челюстях.

Отсутствие зубов, кариес , парадонтоз , нарушает процесс жевания и снижают процессы пищеварения в ротовой полости.

Функции желудочно — кишечного тракта

Двигательная или моторная функция, осуществляется за счет мускулатуры пищеварительного аппарата и включает в себя процессы жевания в полости рта, глотания, перемещения пищи по пищеварительному тракту и удаление из организма непереваренных остатков.

Секреторная функция заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного сока, сока поджелудочной железы, кишечного сока, желчи. Эти соки содержат ферменты, которые расщепляют белки, жиры и углеводы на простые химические соединения. Минеральные соли, витамины, вода поступают в кровь в неизменном виде.

Инкреторная функция связана с образованием в пищеварительном тракте некоторых гормонов, которые оказывают воздействие на процесс пищеварения. К таким гормонам относятся: гастрин, секретин, холецистокинин-панкреозимин, мотилин и многие другие гормоны, которые влияют на моторную и секреторную функции желудочно-кишечного тракта.

Экскреторная функция пищеварительного тракта выражается в том, что пищеварительные железы выделяют в полость желудочно-кишечного тракта продукты обмена, например, аммиак, мочевину, соли тяжелых металлов, лекарственные вещества, которые затем удаляются из организма.

Всасывательная функция. Всасывание - это проникновение различных веществ через стенку желудочно-кишечного тракта в кровь и лимфу. Всасыванию подвергаются в основном продукты гидролитического расщепления пищи - моносахара жирные кислоты и глицерин, аминокислоты и др. В зависимости от локализации процесса пищеварения его делят на внутриклеточное и внеклеточное.

Внутриклеточное пищеварение - это гидролиз пищевых веществ, которые попадают внутрь клетки в результате фагоцитоза (защитная функция организма, выражающаяся в захватывании и переваривании особыми клетками – фагоцитами посторонних частиц) или пиноцитоза (усваивание клетками воды и растворенных в ней веществ). В организме человека внутриклеточное пищеварение имеет место в лейкоцитах.

Внеклеточное пищеварение делится на дистантное (полостное) и контактное (пристеночное, мембранное).

Дистантное (полостное) пищеварение характеризуется тем, что ферменты в составе пищеварительных секретов осуществляют гидролиз пищевых веществ в полостях желудочно-кишечного тракта. Дистантным оно называется потому, что сам процесс пищеварения осуществляется на значительном расстоянии от места образования ферментов.

Контактное (пристеночное, мембранное) пищеварение осуществляется ферментами, фиксированными на клеточной мембране. Структуры, на которых фиксированы ферменты, представлены в тонком отделе кишечника гликокаликсом - сетевидным образованием из отростков мембраны — микроворсинок. Первоначально гидролиз пищевых веществ начинается в просвете тонкой кишки под влиянием ферментов поджелудочной железы. Затем образовавшиеся олигомеры гидролизуются ферментами поджелудочной железы. Непосредственно у мембраны гидролиз образовавшихся димеров производят фиксированные на ней собственно кишечные ферменты. Эти ферменты синтезируются в энтероцитах и переносятся на мембраны их микроворсинок.

Наличие в слизистой оболочке тонкой кишки складок, ворсинок, микроворсинок увеличивает внутреннюю поверхность кишки в 300-500 раз, что обеспечивает гидролиз и всасывание на огромной поверхности тонкой кишки.

Пищеварение в полости рта, жевание

Пищеварение в полости рта - это первое звено в сложной цепи процессов ферментативного расщепления пищевых веществ до мономеров. Пищеварительные функции полости рта включают в себя апробирование пищи на съедобность, механическую переработку пищи и частичную химическую ее обработку.

Моторная функция в полости рта начинается с акта жевания. Жевание - физиологический акт, который обеспечивает измельчение пищевых веществ, смачивание их слюной и формирование пищевого комка. Жевание обеспечивает качество механической обработки пищи в полости рта. Оно оказывает влияние на процесс пищеварения в других отделах пищеварительного тракта, изменяя их секреторную и моторную функции.

Одним из методов изучения функционального состояния жевательного аппарата является мастикациография - запись движений нижней челюсти при жевании. На записи, которая называется мастикациограммой можно выделить жевательный период, состоящий из 5 фаз:

1 фаза - фаза покоя;

2 фаза - введение пищи в полость рта;

3 фаза - ориентировочное жевание или начальная жевательная функция, она соответствует процессу апробации механических свойств пищи и начальному ее дроблению;

4 фаза - основная или истинная фаза жевания, она характеризуется правильным чередованием жевательных волн, амплитуда и продолжительность которых определяется величиной порции пищи и ее консистенцией;

5 фаза - формирование пищевого комка имеет вид волнообразной кривой с постепенным уменьшением амплитуды волн.

Жевание представляет собой саморегуляторный процесс, в основе которого лежит функциональная система жевания. Полезным приспособительным результатом этой функциональной системы является пищевой комок, сформированный в процессе жевания и подготовленный для глотания. Функциональная система жевания формируется для каждого жевательного периода.

При поступлении пищи в полость рта происходит раздражение рецепторов слизистой оболочки.

Возбуждение от этих рецепторов по чувствительным волокнам язычного (ветвь тройничного нерва), языкоглоточного, барабанной струне (ветвь лицевого нерва) и верхнегортанного нерва (ветвь блуждающего нерва) поступает в чувствительные ядра этих нервов продолговатого мозга (ядро салитарного тракта и ядро тройничного нерва). Далее возбуждение по специфическому пути доходит до специфических ядер зрительных бугров, где происходит переключение возбуждения, после которого оно поступает в корковый отдел орального анализатора. Здесь на основе анализа и синтеза поступающих возбуждений принимается решение о съедобности поступивших в полость рта веществ.

Несъедобная пища отвергается (выплевывается), что является одной из важных защитных функций полости рта. Съедобная пища остается в полости рта и жевание продолжается. В этом случае к потоку информации от рецепторов присоединяется возбуждение от механорецепторов пародонта - опорного аппарата зуба.

Произвольное сокращение жевательных мышц обеспечивается участием коры больших полушарий головного мозга. В акте жевания и формировании пищевого комка обязательное участие принимает слюна. Слюна - это смесь секретов трех пар крупных слюнных желез и множества мелких железок, расположенных в слизистой оболочке полости рта. К секрету, выделяемому из выводных протоков слюнных желез, примешиваются эпителиальные клетки, частицы пищи, слизь, слюнные тельца (лейкоциты, лимфоциты), микроорганизмы. Такая слюна, смешанная с различными включениями, называется ротовой жидкостью. Состав ротовой жидкости изменяется в зависимости от характера пищи, состояния организма, а также под влиянием факторов внешней среды.

Секрет слюнных желез содержит около 99% воды и 1 % сухого остатка, в который входят анионы хлоридов, фосфатов, сульфатов, бикарбонатов, иодитов, бромидов, фторидов. В слюне содержатся катионы натрия, калия, кальция, магния, а также микроэлементы (железо, медь, никель и др.).

Органические вещества представлены в основном белками. В слюне имеются самые различные по происхождению белки в том числе и белковое слизистое вещество муцин. В слюне содержатся азотсодержащие компоненты: мочевина, аммиак и др.

Функции слюны.

Пищеварительная функция слюны выражается в том, что она смачивает пищевой комок и подготавливает его к перевариванию и проглатыванию, а муцин слюны склеивает порцию пищи в самостоятельный комок. В слюне обнаружено свыше 50 ферментов.

Несмотря на то, что пища в полости рта находится короткое время — около 15 с, пищеварение в полости рта имеет большое значение для осуществления дальнейших процессов расщепления пищи, т. к. слюна, растворяя пищевые вещества, способствует формированию вкусовых ощущении и влияет на аппетит.

В полости рта под влиянием ферментов слюны начинается химическая переработка пищи. Фермент слюны амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы, а второй фермент - мальтаза - расщепляет мальтозу до глюкозы.

Защитная функция слюны выражается в следующем:

слюна защищает слизистую оболочку полости рта от пересыхания, что особенно

важно у человека, использующего в качестве средства общения речь;

белковое вещество слюны муцин способен нейтрализовать кислоты и щелочи;

в слюне содержится ферментоподобное белковое вещество лизоцим, который обладает бактериостатическим действием и принимает участие в процессах регенерации эпителия слизистой оболочки полости рта;

ферменты нуклеазы, содержащиеся в слюне, участвуют в деградации нуклеиновых кислот вирусов и таким образом защищают организм от вирусной инфекции;

в слюне обнаружены ферменты свертывания крови, от активности которых зависят процессы воспаления и регенерации слизистой оболочки полости рта;

в слюне обнаружены вещества, препятствующие свертыванию крови (антитромбинопластины и антитромбины) ;

в слюне содержится большое количество иммуноглобулинов, что защищает организм от попадания болезнетворных микроорганизмов.

Трофическая функция слюны. Слюна является биологической средой, которая контактирует с эмалью зуба и является для нее основным источником кальция, фосфора, цинка и других микроэлементов, что является немаловажным фактором для развития и сохранности зубов.

Выделительная функция слюны. В состав слюны могут выделяться продукты обмена - мочевина, мочевая кислота, некоторые лекарственные вещества, а также соли свинца, ртути и др., которые выводятся из организма после сплевывания, благодаря чему организм освобождается от вредных продуктов жизнедеятельности.

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта — спам опубликован не будет

1. Http://www.emanual.ru/ — учебники в электронном виде.

2. Http://www.computer-museum.ru/ — иллюстрированная история персональных компьютеров на русском языке.

3. Http://www.km.ru/ — крупнейшая в России электронная компьютерная энциклопедия.

4. Http://www.rusdoc.ru/ — компьютерная электронная библиотека.

5. Http://www.comppost.bip.ru/ — on-line журнал о компьютерах.

6. Http://www.ruslogic.narod.ru/lectures/1.htm. — курс лекций по информатике.

7. Http://matsievsky.newmail.ru. – компьютерные новости.

Физиология пищеварения

Пищеварение – это совокупность физических, химических и физиологических процессов, в результате которых питательные вещества расщепляются до более простых химических соединений. Эти соединения способны проходить через стенку желудочно-кишечного тракта, поступать в кровоток и усваиваться клетками организма. Кроме того, компоненты пищи должны утратить свою видовую специфичность, иначе они будут приниматься иммунной системой как чужеродные вещества.

Пищеварительная система человека. Пищеварение осуществляет целая группа органов, которые можно разделить на два основных отдела: пищеварительный тракт и пищеварительные железы (слюнные железы, печень, поджелудочная железа).

К пищеварительному тракту относятся ротовая полость, глотка, пищевод, желудок, тонкий и толстый кишечник. В тонком кишечнике выделяют три отдела: двенадцатиперстная кишка, тощая и подвздошная. Толстый кишечник имеет шесть отделов: слепая кишка, ободочную (восходящую, поперечную, нисходящую, сигмовидную) и прямая кишка. Первая подразделяется на короткую двенадцатиперстную кишку, тощую и подвздошную; вторая – на слепую кишку, и прямую.

В пищеварительном тракте происходят физические изменения пищи – размельчение, перемешивание, образование суспензий и эмульсий и частичное растворение. Химические изменения связаны с рядом последовательных стадий расщепления белков, жиров и углеводов на более мелкие соединения. Химические изменения происходят в результате действия пищеварительных ферментов.

Пищеварительные ферменты делятся на три основные группы:

▪ протеазы – ферменты, расщепляющие белки;

▪ липазы – ферменты, расщепляющие жиры;

▪ амилазы – ферменты, расщепляющие углеводы.

Ферменты образуются в специальных секреторных клетках пищеварительных желез и поступают в пищеварительный тракт вместе со слюной, желудочным, поджелудочным и кишечным соками. Движение пищи по пищеварительному тракту напоминает своеобразный конвейер, на котором пищевые вещества последовательно подвергаются действию различных ферментов и в конечном итоге расщепляются. Только минеральные соли, вода и витамины, как полагают, усваиваются человеком в том виде, в котором они находятся в пище.

Пищеварительный тракт обеспечивает также продвижение пищи, всасывание пищевых веществ и выведение не переваренных остатков пищи в виде кала.

Пищеварение во рту. Пищеварение начинается в ротовой полости с измельчения пищи в процессе жевания и увлажнения ее слюной (за сутки образуется от 0,5 до 2 л слюны). Слюна вырабатывается в мелких железах полости рта и в крупных парных железах: околоушной, подъязычной и подчелюстной. Слюна содержит до 99,4% воды и имеет слабощелочную реакцию. В слюне человека содержатся бактерицидные вещества и ферменты (амилаза и мальтаза), вызывающие расщепление углеводов до глюкозы. Но полного расщепления крахмала до глюкозы не происходит из-за слишком короткого пребывания пищи во рту – от 15 до 20 с. Медленная еда, тщательное пережевывание пищи – важное условие предупреждения нарушений со стороны органов пищеварения.

Пищеварение в желудке. Прожеванная, смоченная слюной и ставшая более скользкой пища в виде комка перемещается на корень языка, попадает в глотку, затем в пищевод. Вход из пищевода в желудок закрыт специальным клапаном. Когда пища проходит по пищеводу (от 2 до 9 с, в зависимости от плотности пищи) и растягивает его, рефлекторно открывается вход в желудок. После перехода пищи в желудок клапан снова закрывается и остается закрытым до нового поступления пищи в пищевод из ротовой полости. Однако при некоторых патологических состояниях клапан входа в желудок во время пищеварения остается не полностью закрытым и кислое содержимое из желудка может попадать в пищевод. Это сопровождается неприятным ощущением, которое называют изжогой. Клапан, разделяющий пищевод и желудок может открываться также при резких сокращениях желудка, брюшных мышц и диафрагмы во время рвоты.

Пищеварительный тракт насчитывает примерно 35 подобных клапанов, которые находятся на границах отдельных его частей. Благодаря клапанам (или сфинктерам) содержимое каждой части пищеварительного канала не только движется в нужном направлении, но и успевает пройти соответствующую химическую обработку – расщепиться и всосаться. Клапанный аппарат регулирует также поступление различных соков и жидкостей, защищает от обратного хода переработанных веществ. Тем самым в любом из отделов пищеварительного тракта сохраняются присущие именно этому участку химическая среда и бактериальный состав.

Пищевой комок в желудке, в течение нескольких часов подвергается механической и химической обработке. Химические изменения происходят под действием желудочного сока, выделяемого соответствующими железами. Желудочный сок содержит ферменты, расщепляющие белки и жиры.

В процессе пищеварения в желудке большую роль играет соляная кислота желудочного сока. Соляная кислота повышает активность ферментов, вызывает денатурацию и набухание белков и тем самым способствует их частичному расщеплению, а также оказывает бактерицидное действие.

Секреция желудочного сока зависит от характера питания. При длительном употреблении в основном углеводистой пищи (хлеба, картофеля, овощей, круп) секреция желудочного сока снижается и, наоборот, повышается при постоянном употреблении высокобелковой пищи, например мяса. Это касается как объема выделяемого желудочного сока, так и его кислотности.

Обычно пища находится в желудке от 6 до 8 часов и дольше. Пища, богатая углеводами, эвакуируется быстрее, чем богатая белками; жирная пища задерживается в желудке на от 8 до 10 часов; жидкости начинают переходить в кишечник почти сразу после их поступления в желудок.

Пищеварение в тонком кишечнике. Содержимое желудка переходит в кишечник, когда его консистенция становиться жидкой и полужидкой. В двенадцатиперстной кишке пища подвергается действию поджелудочного сока, желчи, а также сока находящихся в слизистой оболочке этой кишки специальных желез.

При поступлении кислого желудочного содержимого в полость двенадцатиперстной кишки происходит нейтрализация соляной кислоты поджелудочным и другими соками. Иногда поджелудочный сок называют панкреатическим соком (от латинского «pancreas» – поджелудочная железа). Выделяемый поджелудочной железой сок представляет собой бесцветную прозрачную жидкость с рН 7,8-8,4. В состав поджелудочного сока входят ферменты, расщепляющие белки, полипептиды (продукты распада белков), жиры, углеводы.

Ферменты поджелудочного сока обладают способностью расщеплять белки до свободных аминокислот, жиры – до глицерина и жирных кислот. Секреция поджелудочного сока начинается через 2-3 мин после приема пищи и продолжается от 6 до 14 ч. Наиболее длительным поджелудочное сокоотделение бывает при приеме жирной пищи.

Ферментный состав поджелудочного сока изменяется в зависимости от характера питания. Обнаружено, что при диете, богатой жирами, активность липазы в поджелудочном соке возрастает. При систематическом употреблении пищи, богатой углеводами, повышается активность амилазы; при богатой белками мясной диете увеличивается активность фермента протеазы.

Таким образом, назначение поджелудочного сока – нейтрализация кислого содержимого в двенадцатиперстной кишке и расщепление углеводов, жиров, белков, нуклеиновых кислот за счет полостного пищеварения.

Большая роль в пищеварении принадлежит печени. Клетки печени вырабатывают и секретируют желчь, которая собирается в желчном пузыре, а из него поступает в двенадцатиперстную кишку для участия в процессе пищеварения. Желчь выполняет целый ряд функций:

– резко повышает активность ферментов, расщепляющих жиры;

– эмульгирует жиры, чем способствует улучшению их расщепления;

– участвует во всасывании жирных кислот;

– усиливает моторику (перистальтику) кишечника.

Нарушения в образовании желчи или ее поступлении в кишечник влекут за собой сдвиги в процессах переваривания и всасывания жиров.

В состав желчи входят специфические органические вещества, которыми являются жирные кислоты и желчный пигмент билирубин.

Пищеварительная система человека

Вдоль всей внутренней оболочки тонкого кишечника расположены специальные железы, которые вырабатывают и секретируют кишечный сок, дополняющий своим действием переваривание пищевых веществ, начатое в ротовой полости и желудке и продолженное в двенадцатиперстной кишке.

Кишечный сок представляет собой бесцветную жидкость, мутноватую от примеси слизи и эпителиальных клеток. Кишечный сок имеет щелочную реакцию и содержит целый комплекс пищеварительных ферментов.

Кроме полостного пищеварения, осуществляемого ферментами в полости кишечника, большое значение имеет пристеночное пищеварение, которое происходит благодаря тем же ферментам, но находящимися на слизистой оболочки внутренней поверхности тонкой кишки. Этот вид пищеварения получил также название контактного или мембранного пищеварения. Особенно большую роль играет контактное пищеварение в расщеплении дисахаридов до моносахаридов и мелких пептидов до аминокислот.

После очень сложных процессов переваривания в тонком кишечнике происходит всасывание пищевых веществ в лимфу и в кровь. В кишечнике может всасываться за 1 час от 2 до 3 л жидкости, содержащей растворенные в ней пищевые вещества. Это возможно только потому, что общая всасывающая поверхность кишечника очень велика благодаря большому количеству особых складок и выпячиваний слизистой оболочки (так называемых ворсинок), а также вследствие особой структуры эпителиальных клеток, выстилающих кишечник. На обращенной в сторону просвета кишки поверхности этих клеток расположены тончайшие нитевидные отростки (микроворсинки), образующие как бы клеточную кайму. На поверхности одной клетки находится от 1600 до 3000 микроворсинок, внутри которых проходят специальные микроканальцы. Наличие ворсинок и особенно микроворсинок увеличивает всасывающую поверхность слизистой оболочки кишечника настолько, что она достигает громадной величины – 500 квадратных метров. На этой же поверхности происходят процессы пристеночного пищеварения. Непереваренные остатки пищи далее поступают в толстый кишечник.

Пищеварение в толстом кишечнике. В толстом кишечнике активное участие в процессах пищеварения принимают облигатные (обязательные) микроорганизмы – бифидобактерии, бактероиды, лактобактерии, кишечная палочка, энтерококки. Их называют «пробиотиками», т.е. «необходимыми для жизни».

Нормальная кишечная микрофлора составляет около 5% от массы тела (от 3 до 5 кг). В норме в толстом кишечнике в 1 г содержимого находится до 250 млрд. микроорганизмов (от 30 до 40% содержимого толстого кишечника). В условиях экологического неблагополучия, стрессовых ситуаций, нерационального питания количество этих бактерий снижается.

Роль лакто- и бифидобактерий в организме велика: им принадлежит ведущее значение в обеспечении качества белкового и минерального обмена; поддержании резистентности (от латинского «resistentia» – сопротивление, противодействие), установлена их антимутагенная (от латинского «mutatio» – изменение) и антиканцерогенная активность.

Микрофлора толстой кишки для своего роста получает питательные вещества из растительной клетчатки, которая не переваривается пищеварительными ферментами человека. Конечными продуктами жизнедеятельности кишечной микрофлоры являются летучие жирные кислоты (уксусная, пропионовая и масляная), которые, всасываясь, дают организму дополнительную энергию и служат для питания клеток, выстилающих слизистую оболочку кишечника. За счет микрофлоры кишечника организм удовлетворяет от 6 до 9 % потребности в энергии. Благодаря микрофлоре поддерживается функция и целостность поверхности толстого кишечника, увеличивается всасывание воды и солей.

В толстом кишечнике микроорганизмами синтезируются аминокислоты, витамины группы B, K, PP, D, биотин, пантотеновая и фолиевая кислоты. В результате жизнедеятельности бифидобактерий образуются кислоты, которые подавляют размножение гнилостных и болезнетворных бактерий, препятствуют их проникновению в верхние отделы кишечника.

Всасывание пищевых веществ. Всасывание – конечная цель процесса пищеварения, осуществляется на протяжении всего пищеварительного тракта – от ротовой полости до толстого кишечника. В ротовой полости начинают всасываться моносахариды, в желудке всасываются вода и алкоголь. От 50 до 60% продуктов метаболизации белков всасывается в двенадцатиперстной кишке, 30% – в тонкой и 10% в толстой кишке. Углеводы всасываются только в виде моносахаров, при этом присутствие в кишечном соке солей натрия повышает скорость всасывания более чем в 100 раз. Продукты метаболизма жиров, большинство поступающих с пищей водо- и жирорастворимых витаминов, всасываются в тонкой кишке. Всосавшиеся в кишечник продукты расщепления пищевых веществ, такие, как сахара и аминокислоты с током крови поступают в печень. В печени из различных моносахаридов (фруктоза и галактоза) образуется глюкоза, которая затем поступает в общий кровоток. Избыток глюкозы преобразуется в печени в гликоген. В печени происходит обмен аминокислот, в том числе синтез заменимых аминокислот. Печень выполняет также детоксицирующую функцию по отношению к ядовитым веществам, которые могут поступать в кровь из полости кишечника. Например, в толстом кишечнике в результате жизнедеятельности присутствующих в них бактерий образуются такие ядовитые вещества, как индол, скатол, фенол и другие. В клетках печени эти ядовитые вещества преобразуются в значительно менее токсичные соединения. В печени происходит также детоксикация различных ксенобиотиков (от греческого «хenos»– чужой), которые могут попадать в продукты питания и всасываться из полости кишечника в кровь.

В толстом кишечнике непереваренные остатки пищи могут находиться от 10 до 15 часов. В этом отделе пищеварительного тракта в результате всасывания воды (до 10 л в сутки) происходит постепенное формирование каловых масс, которые накапливаются в сигмовидной кишке. При акте дефекации они выделяются из организма человека через прямую кишку.

Продолжительность всего процесса пищеварения у здорового взрослого человека составляет от 24 до 36 часов.

lektsii.net — Лекции.Нет — 2014-2018 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав

Пищеварительная система выполняет пищеварительные и не-пищеварительные функции.

Пищеварительные функции.

1. Моторная (двигательная) функция — это сократительная деятельность пищеварительного тракта, обеспечивающая измель-чение пищи, ее перемешивание с пищеварительными секретами и перемещение пищевого содержимого в дистальном направлении.

2. Секреция — синтез секреторной клеткой специфического продукта — секрета и выделение его из клетки. Секрет пищевари-тельных желез обеспечивает переваривание пищи.

3. Всасывание — транспорт питательных веществ во внутрен-нюю среду организма.

Непищеварительные функции пищеварительной сис-темы.

1. Защитная функция осуществляется с помощью нескольких механизмов. ]. Слизистые оболочки пищеварительного тракта.пре-пятствуют проникновению во внутреннюю среду организма непере-варенной пищи, инородных веществ и бактерий (барьерная функция). 2. Пищеварительные соки обладают бактерицидным и бактериостати-ческим действием. 3. Местная иммунная системе пищеварительного тракта (миндалины глоточного кольца, лимфатические фолликулы в стенке кишки, пейеровы бляшки, плазматические клетки слизистой оболочки желудка и кишечника, червеобразный отросток) блоки-рует действие патогенных микроорганизмов. 4. Пищеварительный тракт вырабатывает естественные антитела при контакте с обли-гатной кишечной микрофлорой.

2. Метаболическая функция заключается в кругообороте эндогенных веществ между кровью и пищеварительным трактом, обеспечивающим возможность их повторного использования в про-цессах обмена веществ или пищеварительной деятельности.

АНАТОМИЯ И ФИЗИОЛОГИЯ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ

В ус-ловиях физиологического голода эндогенные белки периодически выделяются из крови в полость желудочно-кишечного тракта в со-ставе пищеварительных соков, где они подвергаются гидролизу, а образующиеся при этом аминокислоты всасываются в кровь и вклю-чаются в метаболизм. Значительное количество воды и растворен-ных в ней неорганических солей циркулирует между кровью и пи-щеварительным трактом.

3. Экскреторная (выделительная) функция заключается в выведении из крови с секретами желез в полость пищеварительно-го тракта продуктов обмена (например, мочевины, аммиака) и раз-личных чужеродных веществ, поступивших в кровоток (соли тя-желых металлов, лекарственные вещества, изотопы, красители), вводимых в организм с диагностическими целями.

4. Эндокринная функция заключается в секреции гормонов пищеварительной системы, основными из которых являются: ин-

сулин, глюкагон, гастрин, серотонин, холецистокинин, секретин, вазоактивный интестинальный пептид, мотилин.

Состояние голода. Ощущение голода возникает после эвакуа-ции химуса из желудка и двенадцатиперстной кишки, мышечная стен-ка которых приобретает повышенный тонус и усиливается импуль-сация от механорецепторов пустых органов {сенсорная стадия состояния голода). При снижении питательных веществ в крови на-чинается метаболическая стадия состояния голода. Недостаток питательных веществ в крови («голодная» кровь) воспринимается хеморецепторами сосудистого русла и непосредственно гипоталаму-сом, избирательно чувствительными к недостатку в крови опреде-ленных питательных веществ. При этом формируется пищевая мо-тивация (вызванное доминирующей пищевой потребностью побуждение организма для пищевого поведения — поиск, добывание и поедание пищи). Раздражение электрическим током гипоталами-ческого центра голода у животных вызывает гиперфагию — непре-рывное поедание пищи, а его разрушение — афагию (отказ от пищи). Центр голода латерального гипоталамуса находится в реципрокных (взаимотормозящих) отношениях с центром насыщения вентроме-диального гипоталамуса. При стимуляции этого центра наблюдает-ся афагия, а при его разрушении — гиперфагия.

Состояние насыщения. После приема достаточного количе-ства пищи для удовлетворения пищевой потребности наступает стадия сенсорного насыщения, которая сопровождается положи-тельной эмоцией. Стадия истинного насыщения наступает зна-чительно позднее — через 1,5-2 ч с момента приема пищи, когда в кровь начинают поступать питательные вещества.

Типы пищеварения

Выделяют три типа пищеварения:

1) внеклеточное;

2) внутриклеточное;

3) мембранное.

Внеклеточное пищеварение происходит за пределами клетки, которая синтезирует ферменты. В свою очередь, оно делится на полостное и внеполостное. При полостном пищеварении ферменты действуют на расстоянии, но в определенной полости (например, это выделение секрета слюнными железами в ротовую полость). Внеполостное осуществляется за пределами организма, в котором образуются ферменты (например, микробная клетка выделяет секрет в окружающую среду).

Мембранное (пристеночное) пищеварение было описано в 30-е гг.

Физиология пищеварения. Лекция 4. Пищеварительная система.

XVIII в. А. М. Уголевым. Оно осуществляется на границе между внеклеточным и внутриклеточным пищеварением, т. е. на мембране. У человека осуществляется в тонком кишечнике, поскольку там имеется щеточная кайма. Она образована микроворсинками – это микровыросты мембраны энтероцитов длиной примерно 1–1,5 мкм и шириной до 0,1 мкм. На мембране 1 клетки может образовываться до нескольких тысяч микроворсинок. Благодаря такому строению увеличивается площадь контакта (более чем в 40 раз) кишечника с содержимым. Особенности мембранного пищеварения:

1) осуществляется за счет ферментов, имеющих двойное происхождение (синтезируются клетками и абсорбируются содержимого кишечника);

2) ферменты фиксируются на клеточной мембране таким образом, чтобы активный центр был направлен в полость;

3) происходит только в стерильных условиях;

4) является заключительным этапом в обработке пищи;

5) сближает процесс расщепления и всасывания за счет того, что конечные продукты переносятся на транспортных белках.

В организме человека полостное пищеварение обеспечивает расщепление 20–50 % пищи, а мембранное – 50–80 %.