Для оценки функционального состояния дыхательной системы применяют. Проведение функциональных проб для оценки деятельности дыхательной системы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Муниципальное бюджетное общеобразовательное учреждение

«Северо-Енисейская средняя школа №2»

Исследовательская работа

Изучение и оценка функциональных проб д ыхательной системы у подростков

Выполнили ученики 8а класса

Александрова Светлана

Ярушина Дарья

Руководитель:

Носкова Е.М.

учитель биологии

гп Северо-Енисейский 2015г

Аннотация

Введение

1. Теоретическое исследование

1.1 Строение и значение дыхательной системы человека

2. Практическое исследование:

2.1 Повышение уровня заболеваемости дыхательной системы за

последние годы учащихся МБОУ « Северо-Енисейская средняя школа №2»

2.2 Определение максимального времени задержки дыхания на

глубоком вдохе и выдохе (проба Генчи-Штанге)

2.3 Определение времени максимальной задержки дыхания

после дозированной нагрузки (проба Серкина)

Список литературы

Аннотация

Александрова Светлана Андреевна Ярушина Дарья Игоревна

МБОУ «Северо-Енисейская средняя школа №2», 8а класс

Изучение и оценка функциональных проб дыхательной системы у подростков

Руководитель: Носкова Елена Михайловна, МБОУ ССШ№2 , учитель биологии

Цель научной работы: научиться объективно оценивать состояние дыхательной системы подростка и организма в целом и выявить зависимость её состояния от занятий спортом.

Методы исследования:

Основные результаты научного исследования: Человек в состоянии оценить состояние своего здоровья и оптимизировать свою деятельность. Для этого подростки, могут овладеть необходимыми знаниями и умениями, обеспечивающими возможность ведения здорового образа жизни.

Введение

Процесс дыхания, возникший ещё в докембрийскую эпоху развития жизни, то есть 2 млрд. 300 лет назад, до сих пор обеспечивает всё живое на Земле кислородом. Кислород достаточно агрессивный газ, при его участии происходит расщепление всех органических веществ и образование энергии необходимой для процессов жизнедеятельности любого организма.

Дыхание - это основа жизни любого организма. В ходе дыхательных процессов кислород поступает ко всем клеткам тела и используется для энергетического обмена - расщепления пищевых веществ и синтеза АТФ. Сам процесс дыхания состоит из трех этапов: 1 -внешнее дыхание (вдох и выдох), 2 -газообмен между альвеолами легких и эритроцитами, транспорт кислород а и углекислого газа кровью, 3- клеточное дыхание - синтез АТФ при участии кислорода в митохондриях. Дыхательные пути (носовая полость, гортань, трахея, бронхи и бронхиолы) служат для проведения воздуха, а газообмен происходит между клетками легких и капиллярами и между капиллярами и тканями организма.

Вдох и выдох происходят за счет сокращений дыхательной мускулатуры - межреберных мышц и диафрагмы. Если при дыхании преобладает работа межреберных мышц, то такое дыхание называется грудным, а если диафрагмы - то брюшным.

Регулирует дыхательные движения дыхательный центр, который находится в продолговатом мозге. Его нейроны реагируют на импульсы, приходящие от мышц и легких, а также на повышение концентрации углекислого газа в крови.

Существуют различные показатели, с помощью которых можно оценить состояние дыхательной системы и ее функциональные резервы.

Актуальность работы . Физическое развитие детей и подростков является одним из важных показателей здоровья и благополучия. Но дети часто болеют простудными заболеваниями, не занимаются спортом, курят.

Цель работы научиться объективно оценивать состояние дыхательной системы подростка и организма в целом и выявить зависимость её состояния от занятий спортом.

Для достижения цели поставлены следующие задачи :

Изучить литературу о строении и возрастных особенностях дыхательной системы у подростков, о влиянии загрязнений воздуха на работу дыхательной системы;

На основе результатов ежегодного медицинского осмотра учащихся нашего класса выявить динамику уровня заболеваемости дыхательной системы;

Провести комплексную оценку состояния дыхательной системы двух групп подростков: активно занимающихся спортом и не занимающихся спортом.

Объект исследования : учащиеся школы

Предмет исследования исследование состояния дыхательной системы двух групп подростков: активно занимающихся спортом и не занимающихся спортом.

Методы исследования: анкетирование, эксперимент, сравнение, наблюдение, беседа, анализ продуктов деятельности.

Практическая значимость . Полученные результаты можно использовать в качестве пропаганды здорового образа жизни и активных занятий такими видами спорта: легкая атлетика, лыжи, хоккей, волейбол

Гипотеза исследования:

Считаем, что если мне в ходе исследования удастся выявить определённое положительное влияние занятий спортом на состояние дыхательной системы, то можно будет пропагандировать их как одно из средств укрепления здоровья.

1. Теоретическое исследование

1.1 Строение и значение дыхательной системы человека

Дыхательная система человека состоит из тканей и органов, обеспечивающих легочную вентиляцию и легочное дыхание. К воздухоносным путям относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы. Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения. К элементам костно-мышечной системы, связанным с дыханием, относятся ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы.

Нос и полость носа служат проводящими каналами для воздуха, в которых он нагревается, увлажняется и фильтруется. В полости носа заключены также обонятельные рецепторы. Наружная часть носа образована треугольным костно-хрящевым остовом, который покрыт кожей; два овальных отверстия на нижней поверхности - ноздри, которые открываются каждое в клиновидную полость носа. Эти полости разделены перегородкой. Три легких губчатых завитка (раковины) выдаются из боковых стенок ноздрей, частично разделяя полости на четыре незамкнутых прохода (носовые ходы). Полость носа богато выстлана слизистой оболочкой. Многочисленные жесткие волоски, а также снабженные ресничками эпителиальные и бокаловидные клетки служат для очистки вдыхаемого воздуха от твердых частиц. В верхней части полости лежат обонятельные клетки.

Гортань лежит между трахеей и корнем языка. Полость гортани разделена двумя складками слизистой оболочки, не полностью сходящимися по средней линии. Пространство между этими складками - голосовая щель защищено пластинкой волокнистого хряща - надгортанником. По краям голосовой щели в слизистой оболочке лежат фиброзные эластичные связки, которые называются нижними, или истинными, голосовыми складками (связками). Над ними находятся ложные голосовые складки, которые защищают истинные голосовые складки и сохраняют их влажными; они помогают также задерживать дыхание, а при глотании препятствуют попаданию пищи в гортань. Специализированные мышцы натягивают и расслабляют истинные и ложные голосовые складки. Эти мышцы играют важную роль при фонации, а также препятствуют попаданию каких-либо частиц в дыхательные пути. Трахея начинается у нижнего конца гортани и спускается в грудную полость, где делится на правый и левый бронхи; стенка ее образована соединительной тканью и хрящом. У большинства млекопитающих, в том числе и у человека хрящи образуют неполные кольца. Части, примыкающие к пищеводу, замещены фиброзной связкой. Правый бронх обычно короче и шире левого. Войдя в легкие, главные бронхи постепенно делятся на все более мелкие трубки (бронхиолы), самые мелкие из которых - конечные бронхиолы являются последним элементом воздухоносных путей. От гортани до конечных бронхиол трубки выстланы мерцательным эпителием. Главным органом дыхательной системы являются лёгкие. дыхательный нагрузка заболеваемость учащийся

В целом легкие имеют вид губчатых, пористых конусовидных образований, лежащих в обеих половинах грудной полости. Наименьший структурный элемент легкого - долька состоит из конечной бронхиолы, ведущей в легочную бронхиолу и альвеолярный мешок. Стенки легочной бронхиолы и альвеолярного мешка образуют углубления - альвеолы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела. Относительная величина поверхности, через которую в легких происходит газообмен, больше у животных с высокой активностью и подвижностью. Стенки альвеол состоят из одного слоя эпителиальных клеток и окружены легочными капиллярами. Внутренняя поверхность альвеолы покрыта поверхностно-активным веществом. Отдельная альвеола, тесно соприкасающаяся с соседними структурами, имеет форму неправильного многогранника и приблизительные размеры до 250 мкм. Принято считать, что общая поверхность альвеол, через которую осуществляется газообмен, экспоненциально зависит от веса тела. С возрастом отмечается уменьшение площади поверхности альвеол. Каждое легкое окружено мешком-плеврой. Наружный листок плевры примыкает к внутренней поверхности грудной стенки и диафрагме, внутренний покрывает легкое. Щель между листками называется плевральной полостью. При движении грудной клетки внутренний листок обычно легко скользит по наружному. Давление в плевральной полости всегда меньше атмосферного (отрицательное). В условиях покоя внутриплевральное давление у человека в среднем на 4,5 торр ниже атмосферного (-4,5 торр). Межплевральное пространство между легкими называется средостением; в нем находятся трахея, зобная железа (тимус) и сердце с большими сосудами, лимфатические узлы и пищевод.

У человека легкие занимают около 6% объема тела независимо от его веса. Объем легкого меняется при вдохе за счет работы дыхательных мышц, но не всюду одинаково. Для этого имеются три главные причины, во-первых, грудная полость увеличивается неравномерно во всех направлениях, во-вторых, не асе части легкого одинаково растяжимы. В-третьих, предполагается существование гравитационного эффекта, который способствует смещению легкого книзу.

Какие же мышцы относят к дыхательным? Дыхательные мышцы - это те мышцы, сокращения которых изменяют объем грудной клетки. Мышцы, направляющиеся от головы, шеи, рук и некоторых верхних грудных и нижних шейных позвонков, а также наружные межреберные мышцы, соединяющие ребро с ребром, приподнимают ребра и увеличивают объем грудной клетки. Диафрагма - мышечно-сухожильная пластина, прикрепленная к позвонкам, ребрам и грудине, отделяет грудную полость от брюшной. Это главная мышца, участвующая в нормальном вдохе. При усиленном вдохе сокращаются дополнительные группы мышц. При усиленном выдохе действуют мышцы, прикрепленные между ребрами (внутренние межреберные мышцы), к ребрам и нижним грудным и верхним поясничным позвонкам, а также мышцы брюшной полости; они опускают ребра и прижимают брюшные органы к расслабившейся диафрагме, уменьшая, таким образом, емкость грудной клетки.

Количество воздуха, поступающего в легкие при каждом спокойном вдохе и выходящего при спокойном выдохе, называется дыхательным объемом. У взрослого человека он равен 500 см 3 . Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью. В среднем у взрослого человека она равна 3500 см 3 . Но она не равна всему объему воздуха в легком (общему объему легкого), поскольку легкие полностью не спадаются. Объем воздуха, который остается в не спавшихся легких, называется остаточным воздухом (1500 см 3). Имеется дополнительный объем (1500 см 3), который можно вдохнуть при максимальном усилии после нормального вдоха. А тот воздух, который выдыхается максимальным усилием после нормального выдоха, это резервный объем выдоха (1500 см 3). Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется.

Газ является таким состоянием вещества, при котором оно равномерно распределяется по ограниченному объему. В газовой фазе взаимодействие молекул между собой незначительно. Когда они сталкиваются со стенками замкнутого пространства, их движение создает определенную силу; эта сила, приложенная к единице площади, называется давлением газа и выражается в миллиметрах ртутного столба, или торрах; давление газа пропорционально числу молекул и их средней скорости. Газообмен в легких между альвеолами и кровью происходит путем диффузии. Диффузия возникает в силу постоянного движения молекул газа и обеспечивает перенос молекул из области более высокой их концентрации в область, где их концентрация ниже. Пока внутри плевральное давление остается ниже атмосферного, размеры легких точно следуют за размерами грудной полости. Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движением частей грудной стенки и диафрагмы. Расслабление всех связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. Соответствующая мышечная активность может перевести это положение во вдох или же усилить выдох. Вдох создается расширением грудной полости и всегда является активным процессом. Благодаря своему сочленению с позвонками ребра движутся вверх и наружу, увеличивая расстояние от позвоночника до грудины, а также боковые размеры грудной полости (реберный или грудной тип дыхания). Сокращение диафрагмы меняет ее форму из куполообразной в более плоскую, это увеличивает размеры грудной полости в продольном направлении (диафрагмальный или брюшной тип дыхания). Обычно главную роль во вдохе играет диафрагмальное дыхание. Поскольку люди - существа двуногие, при каждом движении ребер и грудины меняется центр тяжести тела и возникает необходимость приспособить к этому разные мышцы.

При спокойном дыхании у человека обычно достаточно эластических свойств и веса переместившихся тканей, чтобы вернуть их в положение, предшествующее вдоху.

Таким образом, выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условие для вдоха. Активный выдох может возникнуть вследствие сокращения внутренних межреберных мышц в дополнение к другим мышечным группам, которые опускают ребра, уменьшают поперечные размеры грудной полости и расстояние между грудиной и позвоночником. Активный выдох может также произойти вследствие сокращения брюшных мышц, которое прижимает внутренности к расслабленной диафрагме и уменьшает продольный размер грудной полости. Расширение легкого снижает (на время) общее внутри легочное (альвеолярное) давление. Оно равно атмосферному, когда воздух не движется, а голосовая щель открыта. Оно ниже атмосферного, пока легкие не наполнятся при вдохе, и выше атмосферного при выдохе. Внутри плевральное давление тоже меняется на протяжении дыхательного движения; но оно всегда ниже атмосферного (т. е. всегда отрицательное).

Кислород находится в окружающем нас воздухе. Он может проникнуть сквозь кожу, но лишь в небольших количествах, совершенно недостаточных для поддержания жизни. Существует легенда об итальянских детях, которых для участия в религиозной процессии покрасили золотой краской; история дальше повествует, что все они умерли от удушья, потому что «кожа не могла дышать». На основании научных данных смерть от удушья здесь совершенно исключена, так как поглощение кислорода через кожу едва измеримо, а выделение двуокиси углерода составляет менее 1% от ее выделения через легкие. Поступление в организм кислорода и удаление углекислого газа обеспечивает дыхательная система. Транспорт газов и других необходимых организму веществ осуществляется с помощью кровеносной системы. Функция дыхательной системы сводится лишь к тому, чтобы снабжать кровь достаточным количеством кислорода и удалять из нее углекислый газ. Химическое восстановление молекулярного кислорода с образованием воды служит для млекопитающих основным источником энергии. Без нее жизнь не может продолжаться дольше нескольких секунд. Восстановлению кислорода сопутствует образование CO 2 . Кислород, входящий в CO 2 не происходит непосредственно из молекулярного кислорода. Использование O 2 и образование CO 2 связаны между собой промежуточными метаболическими реакциями; теоретически каждая из них длятся некоторое время.

Обмен O 2 и CO 2 между организмом и средой называется дыханием. У высших животных процесс дыхания осуществляется благодаря ряду последовательных процессов:

І Обмен газов между средой и легкими, что обычно обозначают как «легочную вентиляцию»;

І Обмен газов между альвеолами легких и кровью (легочное дыхание);

І Обмен газов между кровью и тканями;

І И наконец, газы переходят внутри ткани к местам потребления (для O 2) и от мест образования (для CO 2) (клеточное дыхание).

Выпадение любого из этих четырех процессов приводят к нарушениям дыхания, и создает опасность для жизни человека.

2. Практическая часть

2.1 Динамика уровня заболеваемости дыхательной системы за последние три года учащихся 8а класса МБОУ « Северо-Енисейская средняя школа №2»

На основании результатов полученных по результатам ежегодного медицинского осмотра школьников мы выявили, что ежегодно возрастает количество таких заболеваний как: ОРЗ, ОРВИ, тонзиллит, назофарингит.

2. 2 Определение максимального времени задержки дыхания на глубоком вдохе и выдохе (проба Генчи-Штанге)

Для проведения экспериментального исследования нами было подобрано две группы добровольцев примерно одинаковых по антропометрическим данным и возрасту, различающиеся тем, что в одной группе были учащиеся, активно занимающиеся спортом (таблица 1), а в другой равнодушные к занятиям физкультуры и спорта (таблица 2).

Таблица 1. Группа испытуемых ребят, занимающихся спортом

№ п/п

Имя испытуемого

Рост (м.)

Индекс Кетле

(вес кг./рост м 2 )

N = 20 -23

фактически

норма

17,14 меньше нормы

14 лет 2 мясаца

20,25 норма

Анастасия

14 лет 7 месяцев

17,92 меньше нормы

14 лет 3 месяца

22,59 норма

14лет 5 месяцев

22,49 норма

Елизавета

14 лет 2 месяца

19,39 меньше нормы

14 лет 8 месяцев

20,95 норма

14 лет 2 месяца

21,19 норма

14 лет 1 месяц

21,78 норма

15 лет 2 месяца

21,03 норма

ИМТ = m| h 2 ,

где m - масса тела в кг, h - рост в м. Формула идеального веса: рост - 110 (для подростков)

Таблица 2. Группа испытуемых ребят, не занимающихся спортом

№ п/п

Имя испытуемого

Возраст (полных лет и месяцев)

Рост (м.)

Индекс Кетле

(вес кг./рост м 2 )

N = 20-25

фактически

норма

14 лет 7 месяцев

21,35 норма

Виктория

14 лет 1 месяц

18,13 меньше нормы

Виктория

14 лет3 месяца

19,38 меньше нормы

14 лет 8 месяцев

19,53 меньше нормы

14 лет 9 месяцев

19,19 меньше нормы

Светлана

14 лет 3 месяца

16,64 меньше нормы

14 лет 8 месяцев

17,79 меньше нормы

14 лет 8 месяцев

24,80 норма

Анастасия

14 лет 3 месяца

17,68 меньше нормы

14 лет 10 месяцев

15,23 меньше нормы

Анализируя данные таблицы, мы заметили, что абсолютно у всех ребят из группы не занимающихся спортом индекс Кетле (массо-ростовой показатель) ниже нормы, а по физическому развитию ребята имеют средний уровень. Ребята из первой группы наоборот все имеют уровень физического развития выше среднего и по 50 % испытуемых по массо-ростовому индексу соответствуют норме, оставшаяся половина не значительно превышают показатели нормы. По внешнему облику ребята из первой группы сложены более атлетически.

После подбора групп и оценки их антрометрических данных им было предложено выполнить функциональные пробы Генчи - Штанге для оценки состояния дыхательной системы. Проба Генчи заключается в следующем - испытуемый задерживает дыхание на выдохе, зажав нос пальцами. У здоровых 14 -летних у мальчиков 25, девочек 24 секунд . При пробе Штанге испытуемый задерживает дыхание на вдохе, прижав нос пальцами. У здоровых 14 - летних школьников время задержки дыхания равняется у мальчиков 64 , девочек - 54 секунд . Все пробы проводились в трёх повторностях.

На основе полученных результатов было найдено среднее арифметическое и данные были занесены в таблицу № 3.

Таблица 3. Результаты функциональной пробы Генчи-Штанге

№ п/п

Имя испытуемого

Проба Штанге (сек.)

Оценка результата

Проба Генчи

(сек.)

Оценка результата

Группа, занимающихся спортом

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Анастасия

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Елизавета

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Выше нормы

Ниже нормы

Ниже нормы

Виктория

Ниже нормы

Ниже нормы

Виктория

Ниже норма

Ниже нормы

Ниже нормы

Ниже нормы

Ниже нормы

Ниже нормы

Светлана

Ниже нормы

Ниже норма

Выше нормы

Ниже нормы

Выше нормы

Анастасия

C пробой Генчи в первой группе все справились успешно: 100 % ребят показали результат выше нормы, а во второй группе только 20 % показали результат выше нормы, 30% соответствует норме,а 50 % - наоборот ниже нормы.

С пробой Штанге в первой группе 100 % ребят дали результат выше нормы, а во второй группе с задержкой дыхания на вдохе в пределах нормы справились 20%, а оставшаяся группа показала результаты ниже нормы. 80%

2.3 Определение времени максимальной задержки дыхания после дозированной нагрузки (проба Серкина)

Для более объективной оценки состояния дыхательной системы испытуемых мы провела с ними ещё одну функциональную пробу - пробу Серкина. Она заключается в следующем:

1. Фаза 1 - испытуемый задерживает дыхание на максимальный срок на спокойном вдохе в положении сидя, время фиксируется.

2. Фаза 2 - через 2 минуты испытуемый делает 20 приседаний

Испытуемый садится на стул и задерживает дыхание на вдохе, время вновь фиксируется.

3. Фаза 3 - после отдыха в течение 1 минуты испытуемый задерживает дыхание на максимальный срок на спокойном вдохе в положении сидя, время фиксируется.

После проведенных испытаний результаты оцениваются по данным таблицы 4:

Таблица 4. Данные результаты для оценки пробы Серкина

Полученные результаты всех участников эксперимента занесены в таблицу 5:

Таблица 5. Результаты пробы Серкина

№ п/п

Имя испытуемого

Фаза 1 - задержка дыхания в покое, t сек

Задержка дыхания после 20 приседаний

Задержка дыхания после отдыха в течение 1 мин

Оценка результатов

T 25 0 , сек

% от фазы 1

t, сек

% от фазы 1

Группа, занимающихся спортом

Здоров не тренирован

Здоров тренирован

Анастасия

Здорова не тренирован

Здоров тренирован

Здоров не тренирован

Елизавета

Здорова тренирована

Здоров тренирован

Здоров тренирован

Здоров не тренирован

Здоров не тренирован

Группа, не занимающихся спортом

Здорова не тренирована

Виктория

Здорова не тренирована

Виктория

Здорова не тренирована

Здорова не тренирована

Здорова не тренирована

Светлана

Здорова не тренирована

Здорова не тренирована

Здоров не тренирован

Анастасия

Здорова не тренирована

Здоров не тренирован

1 ряд - задержка дыхания в покое, сек

2 ряд - задержки дыхания после 20 приседаний

3 ряд - задержка дыхания после отдыха в течение 1 мин

Проанализировав результаты обеих групп, могу сказать следующее:

Во-первых, ни в первой, ни во второй группе не выявлено детей со скрытой недостаточностью кровообращения;

Во-вторых, все ребята второй группы относятся к категории «здоровые не тренированные», что в принципе и следовало ожидать.

В-третьих, в группе ребят, активно занимающихся спортом, только 50 % относится к категории «здоровые, тренированные», а об остальных пока такового не скажешь. Хотя этому есть разумное объяснение. Алексей участвовал в эксперименте после перенесенного ОРЗ.

в - четвертых, отклонение от нормальных результатов при задержки дыхания после дозированной нагрузки, можно объяснить общей гиподинамией 2 группы, что отражается на развитии дыхательной системы

Таблица №6 С равнительная характеристика ЖЕЛ у детей разных возрастов и пристрастием к вредны м привычкам

Жизненная емкость легких у 1 класса

Жизненная емкость легких у 8 класса

Жизненная емкость легких у 10 класса

Жизненная емкость легких у курящих 8-11 кл

Из таблицы видно, что с возрастом увеличивается ЖЕЛ

Выводы

Подводя итоги своего исследования, хотим отметить следующее:

· экспериментальным путем нам удалось доказать, что занятия спортом способствуют развитию дыхательной системы, так как по результатам пробы Серкина можно сказать что у 60 % детей из группы 1 время задержки дыхания возросло, а это значит, что у них дыхательный аппарат более подготовлен к нагрузкам;

· функциональные пробы Генчи-Штанге также показали, что ребята из группы 1 находятся в более выгодном положении. Их показатели выше нормы по обеим пробам соответственно 100 % и 100 %.

Хорошо развитый дыхательный аппарат -- надежная гарантия полноценной жизнедеятельности клеток. Ведь известно, что гибель клеток организма в конечном итоге связана с недостатком в них кислорода. И напротив, многочисленными исследованиями установлено, что чем больше способность организма усваивать кислород, тем выше физическая работоспособность человека. Тренированный аппарат внешнего дыхания (легкие, бронхи, дыхательные мышцы) -- это первый этап на пути к улучшению здоровья.

При использовании регулярных физических нагрузок максимальное потребление кислорода, как отмечают спортивные физиологи, повышается в среднем на 20-30%.

У тренированного человека система внешнего дыхания в покое работает более экономно: частота дыхания снижается но, при этом несколько возрастает его глубина. Из одного и того же объема воздуха, пропущенного через легкие, извлекается большее количество кислорода.

Возрастающая при мышечной активности потребность организма в кислороде «подключает» к решению энергетических задач незадействованные до этого резервы легочных альвеол. Это сопровождается усилением кровообращения во вступившей в работу ткани и повышением аэрации (насыщенность кислородом) легких. Физиологи считают, что этот механизм повышенной вентиляции легких укрепляет их. Кроме того, хорошо «проветриваемая» при физических усилиях легочная ткань менее подвержена заболеваниям, чем те ее участки, которые аэрированы слабее и потому хуже снабжаются кровью. Известно, что при поверхностном дыхании нижние доли легких в малой степени участвуют в газообмене. Именно в местах, где легочная ткань обескровлена, чаще всего возникают воспалительные очаги. И напротив, повышенная вентиляция легких оказывает целительное действие при некоторых хронических легочных заболеваниях.

Значит, для укрепления и развития дыхательной системы необходимо заниматься спортом регулярно.

Список литературы

1. Даценко И.И. Воздушная среда и здоровье. - Львов, 1997

2. Колесов Д.В.., Маш Р.Д. Беляев И.Н.Биология: человек. - Москва, 2008

3. Степанчук Н. А. Практикум по экологии человека. - Волгоград, 2009

Размещено на Allbest.ru

...

Подобные документы

    Определение термина "дыхательная система", ее функции. Функциональная анатомия системы дыхания. Онтогенез органов дыхания во время внутриутробного развития и после рождения. Формирование механизмов регуляции дыхания. Диагностика и лечение заболеваний.

    курсовая работа , добавлен 02.12.2014

    Закладка дыхательной системы у эмбриона человека. Анатомо-физиологические особенности органов дыхания у детей раннего возраста. Пальпация пациента при исследовании органов дыхания, перкуссия и аускультация легких. Оценка спирографических показателей.

    реферат , добавлен 26.06.2015

    Классификация органов дыхательной системы, закономерности их строения. Функциональная классификация мышц гортани. Структурно-функциональная единица легкого. Строение бронхиального дерева. Аномалии развития органов дыхания. Трахейно-пищеводные фистулы.

    презентация , добавлен 31.03.2012

    Общая характеристика дыхательной цепи как системы структурно и функционально связанных трансмембранных белков и переносчиков электронов. Организация дыхательной цепи в митохондриях. Роль дыхательной цепи в улавливании энергии. Задачи и цели ингибиторов.

    реферат , добавлен 29.06.2014

    Внешнее и тканевое дыхание: молекулярная основа процессов. Этапы процесса дыхания. Поступление кислорода в организм и удаление из него углекислого газа как физиологическая сущность дыхания. Строение дыхательной системы человека. Влияние нервной регуляции.

    реферат , добавлен 27.01.2010

    Формирование органов дыхания человека на стадии зародыша. Развитие бронхиального дерева на пятой неделе эмбриогенеза; усложнение строения альвеолярного дерева после рождения. Аномалии развития: дефекты гортани, трахейно-пищеводные фистулы, бронхоэктазии.

    презентация , добавлен 09.10.2013

    Анализ строения и функций органов дыхания (нос, гортань, трахея, бронхи, легкие). Отличительные черты воздухоносных путей и дыхательной части, где происходит газообмен между воздухом, содержащимся в альвеолах легких и кровью. Особенности процесса дыхания.

    реферат , добавлен 23.03.2010

    Гистологическое строение респираторного отдела лёгких. Возрастные изменения и анатомо-физиологические особенности респираторного отдела лёгких. Особенности исследования дыхательной системы у детей. Состав альвеолярного эпителия. Бронхиальное дерево.

    презентация , добавлен 05.10.2016

    Изучение особенностей костной системы птицы. Морфология ее мышечной системы и кожного покрова. Строение пищеварительной, дыхательной, мочеполовой, сердечно-сосудистой, нервной системы. Органы размножения самок и самцов. Железы внутренней секреции птиц.

    курсовая работа , добавлен 22.11.2010

    Особенности процесса газообмена у низших хордовых (оболочники, бесчерепные). Жабры - органы дыхания, характерные для всех первичноводных позвоночных. Развитие механизма вентиляции жабр. Особенности эволюции легких и дыхательных путей у пресмыкающихся.

18700 0

Функциональные пробы, оценивающие состояние нервной системы

Проба Ромберга

Предлагают встать с сомкнутыми стопами, приподнятой головой, вытянутыми вперед руками и закрытыми глазами.

Пробу можно усложнить, поставив ноги одну за другой по одной линии, или проверить эту позу, стоя на одной ноге.

Пальце-носовая проба

Из положения вытянутой руки обследуемый попадает пальцем в кончик носа с закрытыми глазами.

Пяточно-коленная проба

Попасть пяткой в колено противоположной ноги и провести вдоль голени в положении лежа с закрытыми глазами.

Проба Воячека

Испытуемый сидит в кресле с наклоном головы 90 0 и закрытыми глазами. Выполняет 5 вращений за 10 сек.

После пятисекундной паузы испытуемому предлагают поднять голову. До и после вращения считают пульс и измеряют АД.

Оценка: три степени выраженности реакции на вращение:

1 - слабая (тяга туловища в сторону вращения);

2 - средняя (явный наклон туловища);

3 - сильная (наклонность к падению).

Одновременно оцениваются вегетативные симптомы: побледнение лица, холодный пот, тошнота, рвота, учащение сердечных сокращений, изменение АД.

Проба ВНИИФК

Измерив АД и пульс, испытуемому предлагают выполнить задание на точность и координацию, затем он наклоняет туловище на 90 0 кпереди, закрывает глаза и вращается с помощью врача вокруг своей оси.

Скорость вращения 1 оборот за 2 с. После 5 оборотов спортсмен сохраняет 5 с положение наклона, затем выпрямляется и открывает глаза. После подсчета пульса, измерения АД и исследования нистагма, вновь предлагают выполнить тот же комплекс движений, что и до вращения. Чем меньше при этом нарушается точность заданных движений, изменяются величины пульса и АД, тем выше тренированность вестибулярного аппарата.

Проба Яроцкого

Испытуемый занимает положение основной стойки, выполняет вращение головой в одну сторону со скоростью 2 вращения в 1 сек. Засекается время, в течение которого испытуемый сохраняет равновесие.

Норма у нетренированных - не менее 27 сек, у спортсменов выше.

Ортостатическая проба

Применяется для исследования функционального состояния вегетативной нервной системы, симпатического ее отдела. После 5-ти минутного пребывания в горизонтальном положении у обследуемого определяется пульс по 10-секундным интервалам, измеряют АД. Затем исследуемый встает, и в положении стоя считают пульс за 10 секунд и измеряют АД. При нормальной возбудимости симпатического отдела происходит увеличение ЧСС на 20-25% от исходного. Более высокие цифры говорят о повышенной (неблагоприятной) возбудимости симпатического отдела вегетативной нервной системы. АД в норме при вставании, по сравнению с данными в горизонтальном положении, изменяется мало. Систолическое давление колеблется в пределах ±10 мм рт. ст., диастолическое - ±5 мм рт. ст.

Клиностатическая проба

Применяется для исследования парасимпатического отдела вегетативной нервной системы. После 5-ти минут адаптации в положении стоя измеряется АД и пульс, затем обследуемый ложится. Вновь регистрируется пульс и АД. В норме урежение пульса при переходе в горизонтальное положение не более 6-12 уд. в мин., в то время, как более уреженный пульс указывает на преобладание парасимпатических влияний. АД ±10 мм рт. ст. - систолическое, ±5 мм рт. ст. - диастолическое.

Проба Ашнера

В положении испытуемого лежа, надавливаем на глазные яблоки 15-20 с. Пульс в норме урежается на 6-12 уд. в 1 мин от исходного, что свидетельствует о нормальной возбудимости вегетативной нервной системы.

Пробы для оценки функционального состояния дыхательной системы

Проба Штанге

Исследуемый в положении сидя, после кратковременного отдыха (3-5 мин.), делает глубокий вдох и выдох, а затем снова вдох (но не максимальный) и задерживает дыхание. По секундомеру регистрируем время задержки дыхания. У мужчин оно не менее 50с, у женщин - не менее 40с. У спортсменов это время от 60 с до нескольких минут. У детей 6-ти лет: мальчики - 20с, девочки - 15с, 10-ти лет: мальчики -35с, девочки - 20с.

Проба Генчи

В положении сидя после отдыха исследуемый делает несколько глубоких дыханий и на выдохе (не максимальном) задерживает дыхание. У здоровых нетренированных лиц время задержки дыхания составляет 25-30с, у спортсменов - 30-90 секунд.

Пробы Штанге, Генчи позволяют оценить способность организма переносить гипоксию и применяются для врачебного контроля в КТ, оздоровительной физической тренировке, в массовом спорте. При заболеваниях сердечно-сосудистой системы, органов дыхания, анемии время задержки дыхания уменьшается.

Проба Розенталя

Пятикратное измерение ЖЕЛ с помощью спирометра через 15-и секундные интервалы.

Оценка:

  • ЖЕЛ увеличивается - хорошо;
  • ЖЕЛ не изменяется от измерения к измерению - удовлетворительно;
  • ЖЕЛ уменьшается - неудовлетворительно.

Комбинированная проба Серкина

Состоит из 3 фаз.

  • 1-я фаза - задержка дыхания на вдохе (сидя),
  • 2-я фаза - задержка дыхания на вдохе сразу же после 20 приседаний за 30 сек,
  • 3-я фаза - задержка дыхания на вдохе через 1 мин отдыха.
Результаты оцениваются по таблице.

Показатели времени задержки дыхания в норме (проба Серкина)

Пирогова Л.А., Улащик В.С.


Для выявления скрытых нарушений функционирования и резервных возможностей сердечно-сосудистой системы используются дозированные нагрузки (тесты) с анализом результатов пульсометрии и артериальной тонометрии в ответ на нагрузку, а также восстановительных реакций.

В физиолого-гигиенических исследованиях наиболее распространены дозированные функциональные пробы:

Ø физические, например: 20 приседаний за 30 с; двухминутный бег на месте в темпе 180 шагов/мин; трехминутный бег на месте; велоэргометрические нагрузки; степ-тест;

Ø нервно-психические (умственно-эмоциональные);

Ø респираторная , в которую входят пробы с вдыханием смесей с разным содержанием кислорода или углекислоты; задержка дыхания;

Ø фармакологические (с введением разных веществ).

При снижении физиологических резервов организма под влиянием длительной и тяжелой физической работы, кроме изменения числовых характеристик показателей функциональных проб, может затягиваться период восстановления физиологических функций. Одновременно может снижаться работоспособность человека по прямым показателям эффективности работы.

Практическое задание № 1

Функциональные пробы на реактивность сердечно-сосудистой системы

Ход работы . В опыте участвуют четверо: испытуемый, измеряющий АД, подсчитывающий пульс и записывающий данные измерений в таблице.

1) Усаживают испытуемого . Один из участников опыта измеряет у него СД и ДД, второй заполняет таблицу отчета, третий подсчитывает пульсовые удары и тоже протоколирует их.

Определение АД и пульса идет обязательно одновременно. Измерения проводят несколько раз, пока не будут получены по два одинаковых (близких) показателя АД и одинаковых (близких) пульса.

2) Предлагают испытуемому встать . Измеряют давление несколько раз подряд. Одновременно за каждые 15с сообщаются данные частоты пульса. Измерения проводят до тех пор, пока показатели не вернутся к исходным величинам (до полного восстановления).

3) Аналогичное наблюдение надо провести после физической нагрузки - 20 приседаний.

Определяем тип реакции гемодинамики на функциональные нагрузки из существующих трёх основных:

- адекватный - с умеренным учащением пульса не более чем на 50 %, увеличением СД до 30 % при незначительных колебаниях ДД и восстановлением за 3-5 мин;

- неадекватный - с чрезмерным увеличением показателей пульса и АД и задержкой восстановления на более 5 мин;

- парадоксальный – не соответствующий энергетическим потребностям, с колебаниями показателей менее 10% около исходного уровня.

Оценку тренированности сердечно-сосудистой системы к выполнению физической нагрузки, оценку ее резервных возможностей рассчитывают по следующим показателям:

А) коэффициент выносливости (KB), рассчитываемый по формулам Руфье :

либо Руфье-Диксона :

где ЧСС п - исходный пульс покоя; ЧСС1 - пульс за первые 10 с первой минуты после нагрузки; ЧСС 2 - пульс за последние 10 с первой минуты после нагрузки.

Оценка коэффициента выносливости по 4-бальной шкале

Б) показатель качества реакции:

,

где: ПД1, ЧСС1 – пульсовое давление до нагрузки;

ПД 2 , ЧСС 2 - пульсовое давление, соответственно, после нагрузки.

Оценка: у здорового человека ПКР = или < 1.

Увеличение ПКР свидетельствует о неблагоприятной реакции сердечно-сосудистой системы на физическую нагрузку.

4. Составить письменный отчёт о выполненной работе с выводами и рекомендациями

Вопросы к защите практического занятия

1. Постройте графики восстановления ЧСС по полученным данным.

3. Для чего на практике нужны полученные данные?

4. Что мы понимаем под определениями утомление, переутомление?

5. Поясните понятия работоспособность?

6. Что подразумевает определение оптимальный режим труда?

Оценка функционального состояния внешнего дыхания. Функциональные пробы на реактивность дыхательной системы.

Введение

Адаптация – это процесс приспособления организма к меняющимся условиям среды. Это термин обозначающий приспособление организма к общеприродным, производственным и социальным условиям. Адаптацией называют все виды врождённой и приобретённой приспособительной деятельности организмов с процессами на клеточном, органном, системном и организменном уровнях. Адаптация поддерживает постоянство внутренней среды организма.

1. Теоретическая часть

Адаптационный потенциал человека - это показатель приспособления, устойчивости человека к условиям жизни, постоянно меняющимся под воздействием климатоэкологических и социально-экономических и других факторов среды обитания.

В зависимости от способности адаптироваться В.П.Казначеев различает два типа людей: «спринтеров», которые легко и быстро приспосабливаются к резким, но кратковременным изменениям внешней среды, и «стайеров», которые хорошо адаптируются к длительно действующим факторам. Процесс адаптации у стайеров развивается медленно, но установившийся новый уровень функционирования характеризуется прочностью и стабильностью.

А. В. Коробков предложил выделять два вида адаптации: активную (компенсаторную) и пассивную.

Одной из главных разновидностей пассивной адаптации является состояние организма при гиподинамии, когда организм вынужден приспосабливаться к мало- или бездействию регуляторных механизмов. Дефицит проприоцептивных раздражителей приводит к дезорганизации функционального состояния организма. Сохранение жизнедеятельности при этом виде адаптации требует специально разработанных мероприятий, целью которых является сознательная активная двигательная деятельность человека, включая рациональную организацию режима работы и отдыха.

Особенности адаптации человека

При чрезмерной функциональной активности организма из-за нарастания интенсивности воздействия средовых факторов, вызывающих адаптацию до экстремальных величин, может возникнуть состояние дизадаптации. Деятельность организма при дизадаптации отличается функциональной дискоординацией его систем, сдвигами гомеостатических показателей, неэкономичностью энергозатрат. Системы кровообращения, дыхания и др., как и общее функционирование организма, вновь приходят в состояние повышенной активности.

Исходя из положения о том, что переход от здоровья к болезни осуществляется через ряд последовательных стадий процесса адаптации и возникновение заболевания является следствием нарушения адаптационных механизмов, была предложена методика прогностической оценки состояния здоровья человека.

Возможны четыре варианта донозологического диагноза:

1. Удовлетворительная адаптация . Лица данной группы характеризуются малой вероятностью заболеваний, они могут вести обычный образ жизни;

2. Напряжение механизмов адаптации . У лиц данной группы вероятность заболевания выше, механизмы адаптации напряжены, по отношению к ним требуется применение соответствующих оздоровительных мероприятий;

3. Неудовлетворительная адаптация . Эта группа объединяет людей с высокой вероятностью возникновения заболеваний в достаточно близком будущем, если не будут приняты профилактические меры;

4. Срыв адаптации . К этой группе относятся люди со скрытыми, нераспознанными формами заболеваний, явлениями «предболезни», хроническими или патологическими отклонениями, требующими более детального врачебного обследования.

На практике требуется определить степень адаптации организма человека к условиям среды обитания, включающим особенности профессии, отдыха, питания, климатические и экологические факторы.

3. Практическая часть

Пульсометрия

Ø на лучевой артер ии - захватить кисть в области лучезапястного сустава так, чтобы указательный, средний и безымянный пальцы располагались с ладонной стороны, а большой - с тыльной стороны кисти;

Ø на височной артерии - приложить пальцы в области височной кости;

Ø на сонной артерии - на середине расстояния между углом нижней челюсти и грудино-ключичного сочленения указательный и средний пальцы кладутся на адамово яблоко (кадык) и продвигаются вбок на боковую поверхность шеи;

Ø на бедренной артерии - пульс прощупывается в бедренной складке.

Прощупывать пульс следует пальцами, положенными плашмя, а не кончиками пальцев.

Измерение артериального давления способом Короткова

Принято измерять две величины: наибольшее давление, или систолическое , которое возникает при поступлении крови из сердца в аорту, и минимальное, или диастолическое давление, т.е. ту величину, до которой падает давление в артериях во время диастолы сердца. У здорового человека максимальное АД 100-140 мм рт. ст., минимальное 60-90 мм рт. ст. Разница между ними составляет пульсовое давление, которое у здоровых людей равно примерно 30 - 50 мм рт. ст.

Прибор для измерения давления называется сфигмоманометром. Способ основан на выслушивании звуков, слышимых ниже места сдавления артерии, возникающих, когда давление в манжетке ниже систолического, но выше диастолического. При этом во время систолы высокое давление крови внутри артерии преодолевает давление в манжетке, артерия открывается и пропускает кровь. Когда во время диастолы давление в сосуде падает, давление в манжетке становится выше артериального, сжимает артерию и ток крови прекращается. В период систолы кровь, преодолевая давление манжетки, с большой скоростью продвигается вдоль ранее сдавленного участка и, ударяя о стенки артерии ниже манжетки, вызывает появление тонов.

Ход работы. Студенты образуют пары: испытуемый и экспериментатор.

Испытуемый садится боком к столу. Руку кладет на стол. Экспериментатор накладывает манжетку на обнаженное плечо испытуемого и закрепляет ее так, чтобы под ней свободно проходили два пальца.

Винтовой клапан на груше плотно закрывает, чтобы предотвратить утечку воздуха из системы.

Находит в локтевом сгибе руки испытуемого пульсирующую лучевую артерию и устанавливает на ней фонендоскоп.

Создает давление в манжетке, превышающее максимальное, а затем, слегка открыв винтовой клапан, выпускает воздух, что приводит к постепенному снижению давления в манжетке.

При определенном давлении раздаются первые слабые тоны. Давление в манжетке в этот момент регистрируется как систолическое артериальное (СД). При дальнейшем снижении давления в манжетке тоны становятся громче, и, наконец, резко заглушаются или исчезают. Давление воздуха в манжетке в этот момент регистрируется как диастолическое (ДД).

Время, в течение которого измеряют давление по Короткову, не должно превышать 1 мин.

Пульсовое давление ПД = СД - ДД.

Для определения должной индивидуальной нормы АД могут использоваться зависимости:

для мужчин:СД = 109 + 0,5Х+О,1У,

ДД = 74 + 0,1Х+0,15У;

для женщин:СД = 102 + 0,7Х + 0,15У,

ДД = 78 + 0,17Х +0,15У,

где X- возраст, лет; У- масса тела, кг.

Практическое задание № 1

Цель работы: Оценить функциональные возможности дыхательной системы с помощью ряда физиологических проб: проба Розенталя, проба с дозированной физической нагрузкой, пробы с задержкой дыхания (Штанге и Генче), комбинированная проба Саабразе.

Функциональными методами исследования называют группу специальных методов, используемых для оценки функционального состояния организма. Использование этих методов в различных сочетаниях лежит в основе функциональной диагностики, сущность которой заключается в изучении реакции организма на какое-либо дозированное воздействие. Характер наблюдаемых изменений конкретной функции после нагрузки сопоставляется с её значением в покое.

В физиологии труда, спорта и в функциональной диагностике используются понятия "функциональная способность" и "функциональная возможность". Чем выше функциональные возможности, тем потенциально больше функциональные способности. Функциональная способность проявляется в процессе физической деятельности и поддаётся тренировке.

Задание 1. Проба Розенталя.

Оборудование: сухой спирометр, спирт, вата.

Проведение пробы Розенталя сводится к пятикратному последовательному измерению ЖЕЛ с 15-секундными интервалами. У здоровых людей величина ЖЕЛ в пробах или не изменяется или даже нарастает. В случаях заболевания дыхательного аппарата или системы кровообращения, а также у спортсменов при переутомлении, перенапряжениях или перетренировках результаты повторных измерений ЖЕЛ снижаются, что является отражением процессов утомления в дыхательных мышцах и снижения уровня функциональных возможностей нервной системы.

Задание 2. Проба с дозированной физической нагрузкой.

Оборудование: то же.

Определение величины ЖЕЛ после, дозированной физической нагрузки позволяет косвенно оценить состояние лёгочного кровообращения. Его нарушение может происходить, например, при повышении давления в сосудах малого круга кровообращения, в результате чего снижается ёмкость альвеол и как следствие - ЖЕЛ. Определите исходное значение ЖЕЛ (2-3 измерения, среднее арифметическое из полученных результатов будет характеризовать исходное ЖЕЛ), затем выполните 15 приседаний за 30 сек. и вновь определите ЖЕЛ. У здоровых людей под влиянием физической нагрузки ЖЕЛ снижается не более чем на 15 % от исходных значений. Более значительное снижение ЖЕЛ указывает не недостаточность лёгочного кровообращения.

Задание 3. Пробы с задержкой дыхания.

Дыхательные пробы с задержкой дыхания на вдохе и выдохе позволяют судить о чувствительности организма к артериальной гипоксемии (снижение количества связанного кровью кислорода) и гиперкапнии (повышенное напряжение углекислого газа в крови и тканях организма).

Человек может произвольно задерживать дыхание, регулировать частоту и глубину дыхания. Однако задержка дыхания не может быть слишком длительной, так как в крови человека, задержавшего дыхание, накапливается углекислый газ, а когда его концентрация достигает сверхпорогового уровня, возбуждается дыхательный центр и дыхание возобновляется помимо воли человека. Так как возбудимость дыхательного центра у разных людей различна, то и длительность произвольно задержки дыхания у них оказывается разной. Можно повысить время задержки дыхания предварительной гипервентиляцией лёгких (несколько частых и глубоких вдохов и выдохов в течение 20-30 секунд). Во время вентиляции лёгких с максимальной частотой и глубиной углекислый газ "вымывается" из крови и время его накопления до уровня, возбуждающего дыхательный центр, увеличивается. Чувствительность дыхательного центра к гиперкапнии также снижается в процессе тренировок.

Оборудование: зажим для носа, секундомер.

Проба Штанге. Подсчитайте исходный пульс, задержите дыхание на максимальном вдохе после предварительных трёх циклов дыхания, совершённых на 3/4 глубины полного вдоха и выдоха. На время задержки дыхания нос зажать зажимом или пальцами. Запишите время задержки дыхания и посчитайте пульс сразу после возобновления дыхания. Запишите в протокол время задержки дыхания и показатель реакции:

Оценка полученных данных:

менее 39 сек – неудовлетворительно;

40 - 49 сек - удовлетворительно;

свыше 50 сек – хорошо.

Проба Генче. (Задержка дыхания на выдохе). Подсчитайте исходный пульс, сделайте задержку дыхания на выдохе после предварительных трёх глубоких дыхательных движений. Измерьте ЧСС после задержки, рассчитайте ПР.

Оценка полученных данных:

менее 34 сек – неудовлетворительно;

35 - 39 сек – удовлетворительно;

свыше 43 сек – хорошо.

Показатель реакции ПР у здоровых людей не должен превышать 1,2.

Проба на время максимальной задержки дыхания в покое и после дозированной нагрузки (проба Саабразе)

Задержите дыхание на спокойном вдохе на возможно больший срок. Время задержки зафиксируйте и внесите в таблицу 1.

Показатели пробы Саабразе

Затем сделайте15 приседаний за 30 секунд. После этой нагрузки необходимо сесть и тут же вновь задержать дыхание на вдохе, не дожидаясь пока оно успокоится. Время задержки дыхания после нагрузки внесите в таблицу. Найдите разницу и рассчитайте отношение разницы к максимальной задержке дыхания в покое в % по формуле:

а – максимальная задержка дыхания в покое;

б – максимальная задержка дыхания после нагрузки.

У нетренированных людей при физической нагрузке в работу включаются дополнительные мышечные группы, а процессы тканевого дыхания не экономны, углекислый газ в их организме накапливается быстрее. Поэтому и задержка дыхания им удается на меньшее время. Это приводит к значительному расхождению между первым и вторым результатом. Снижение времени задержки на 25% и меньше считается хорошим показателем, на 25-50% - удовлетворительным, а более чем на 50% - плохим.

Оформление результата работы: Результаты обследования функционального состояния дыхания по всем показателям занесите в таблицу и сделайте оценку их в покое и после физической нагрузки.

Исследование и оценка функционального состояния си-стем и органов проводится путём использования функциональных проб . Они могут быть одномомент-ными, двухмоментными или комбинированными.

Пробы проводят с целью оценки реакции организма на нагрузку в связи с тем, что данные, полученные в состоянии покоя, не всегда отражают резервные возможности функциональной си-стемы.

Оценку функционального состояния систем организма про-водят по следующим показателям:

  • качество выполнения физической нагрузки ;
  • процент учащения пульса, частота дыхания;
  • время возвращения к исходному состоянию;
  • максимальное и минимальное артериальное давление;
  • время возвращения артериального давления к исходным данным;
  • тип реакции (нормотоническая, гипертоническая, гипото-ническая, астеническая, дистоническая) по характеру кри-вых пульса, частоты дыхания и артериального давления.

При определении функциональных возможностей организ-ма необходимо учитывать все данные в комплексе, а не отдель-ные показатели (например, дыхания, пульса). Функциональные пробы с физическими нагрузками следует подбирать и при-менять в зависимости от индивидуального состояния здо-ровья и физической подготовленности .

Применение функциональных проб позволяет достаточно точно оценить функциональное состояние организма, трени-рованность и возможность использования оптимальных фи-зических нагрузок.

Показатели функционального состояния ЦНС весьма важ-ны при определении резервных возможностей занимающихся. Так как методика исследования высшей нервной системы с по-мощью электроэнцефалографии является сложной, трудоём-кой, требующей соответствующей аппаратуры, изыскание но-вых методических приёмов вполне оправданно. Для этой цели могут быть использованы, например, апробированные двига-тельные тесты.

Теппинг-тест

Функциональное состояние нервно-мышечной системы можно определить с помощью простой методики — выявле-ния максимальной частоты движений кисти (теппинг-теста). Для этого лист бумаги делят на 4 квадрата размером 6x10 см. Сидя за столом в течение 10 с с максимальной частотой ста-вят карандашом точки в одном квадрате. После паузы в 20 с руку переносят на следующий квадрат, продолжая выполнять движения с максимальной частотой. После заполнения всех квадратов работа прекращается. При подсчёте точек, чтобы не ошибиться, карандаш ведут от точки к точке, не отрывая его от бумаги. Нормальная максимальная частота движений кисти у тренированных молодых людей равна примерно 70 точкам за 10 с, что указывает на функциональную лабиль-ность (подвижность) нервной системы, хорошее функциональ-ное состояние двигательных центров ЦНС. Постепенно сни-жающаяся частота движений кисти указывает на недостаточ-ную функциональную устойчивость нервно-мышечного аппа-рата.

Проба Ромберга

Показателем функционального состояния нервно-мышечной системы может служить статическая устойчивость, которая вы-является с помощью пробы Ромберга. Она заключается в том, что человек встаёт в основную стойку: стопы сдвинуты, глаза закрыты, руки вытянуты вперёд, пальцы разведены (услож-нённый вариант — стопы находятся на одной линии). Опреде-ляется максимальное время устойчивости и наличие тремора кисти. Время устойчивости возрастает по мере улучшения функ-ционального состояния нервно-мышечной системы.

В процессе тренировки происходят изменения в характере дыхания. Объективным показателем функционального состояния дыхательной системы является частота дыхания. Частота дыхания опреде-ляется количеством вдохов за 60 с. Для её определения надо положить руку на грудную клетку и подсчитать число вдохов за 10 с, после чего произвести пересчёт на число вдохов за 60 с. В покое частота дыхания у нетренированного молодого челове-ка составляет 10-18 вдохов/мин. У тренированного спортсме-на этот показатель уменьшается до 6-10 вдохов/мин.

Во время мышечной деятельности увеличиваются как ча-стота, так и глубина дыхания. О резервных возможностях ды-хательной системы свидетельствует тот факт, что если в покое количество воздуха, проходящего через лёгкие в минуту, со-ставляет 5-6 л, то при выполнении таких спортивных нагру-зок, как бег, ходьба на лыжах, плавание, оно повышается до 120-140 л.

Ниже приведены тест на оценку функциональной работоспособности дыхательной системы: пробы Штанге и Генча. Следует иметь в виду, что при выполнении данных тестов большую роль играет волевой фактор. Материал с сайта

Проба Штанге

Простым способом оценки работоспособности дыхательной системы является проба Штанге — задержка дыхания на вдо-хе. Хорошо подготовленные спортсмены задерживают дыха-ние на 60-120 с. Задержка дыхания резко сокращается при неадекватных нагрузках, перетренировке, переутомлении.

Проба Генча

Для этих же целей можно использовать задержку дыхания на выдохе — пробу Генча. По мере тренированности время за-держки дыхания увеличивается. Задержка дыхания на выдохе на 60-90 с — показатель хорошей тренированности организ-ма. При переутомлении этот показатель резко уменьшается.