Водно электролитный. Патология водно-электролитного баланса и нарушения кислотно-основного состояния

В ода составляет примерно 60% массы тела здорового мужчины (около 42 л при массе тела 70 кг). В женском организме общее количество воды около 50%. Нормальные отклонения от средних значений примерно в пределах 15%, в обе стороны. У детей содержание воды в организме выше, чем у взрослых; с возрастом постепенно уменьшается.

Внутриклеточная вода составляет примерно 30-40% массы тела (около 28 л у мужчин при массе тела 70 кг), являясь основным компонентом внутриклеточного пространства. Внеклеточная вода составляет примерно 20% массы тела (около 14 л). Внеклеточная жидкость состоит из интерстициальной воды, в которую входит также вода связок и хрящей (около 15-16% массы тела, или 10,5 л), плазмы (около 4-5%, или 2,8 л) и лимфы и трансцеллюлярной воды (0,5-1% массы тела), обычно не принимающей активного участия в метаболических процессах (ликвор, внутрисуставная жидкость и содержимое желудочно-кишечного тракта).

Водные среды организма и осмолярность. Осмотическое давление раствора может быть выражено гидростатическим давлением, которое должно быть приложено к раствору, чтобы удержать ею в объемном равновесии с простым растворителем, когда раствор и растворитель разделены мембраной, проницаемой только для растворителя. Осмотическое давление определяется количеством частиц, растворенных в воде, и не зависит от их массы, размеров и валентности.

Осмолярность раствора, выраженная в миллиосмолях (мОсм), может быть определена количеством миллимолей (но не миллиэквивалентов), растворенных в 1 л воды солей, плюс число недиссоциированных субстанций (глюкоза, мочевина) или слабодиссоциированных субстанций (белок). Осмолярность определяют с помощью осмометра.

Осмолярность нормальной плазмы - величина достаточно постоянная и равна 285-295 мОсм. Из общей осмолярности лишь 2 мОсм обусловлены растворенными в плазме белками. Таким образом, главным компонентом плазмы, обеспечивающим ее осмолярность, являются растворенные в ней ионы натрия и хлора (около 140 и 100 мОсм соответственно).

Как полагают, внутриклеточная и внеклеточная молярная концентрация должна быть одинаковой, несмотря на качественные различия в ионном составе внутри клетки и во внеклеточном пространстве.

В соответствии с Международной системой (СИ) количество веществ в растворе принято выражать в миллимолях на 1 л (ммоль/л). Понятие «осмолярность», принятое в зарубежной и отечественной литературе, эквивалентно понятию «молярность», или «молярная концентрация». Единицами «мэкв» пользуются тогда, когда хотят отразить электрические взаимоотношения в растворе; единицу «ммоль» используют для выражения молярной концентрации, т. е. общего числа частиц в растворе независимо от того, несут ли они электрический заряд или нейтральны; единицы «мОсм» удобны для того, чтобы показать осмотическую силу раствора. По существу понятия «мОсм» и «ммоль» для биологических растворов идентичны.

Электролитный состав человеческого организма. Натрий является преимущественно катионом внеклеточной жидкости. Хлориды и бикарбонат представляют собой анионную электролитную группу внеклеточного пространства. В клеточном пространстве определяющим катионом является калий, а анионная группа представлена фосфатами, сульфатами, белками, органическими кислотами и в меньшей степени бикарбонатами.

Анионы, находящиеся внутри клетки, обычно поливалентны и через клеточную мембрану свободно не проникают. Единственным клеточным катионом, для которого клеточная мембрана проницаема и который находится в клетке в свободном состоянии в достаточном количестве, является калий.

Преимущественная внеклеточная, локализация натрия обусловлена его относительно низкой проникающей способностью через клеточную мембрану и особым механизмом вытеснения натрия из клетки - так называемым натриевым насосом. Анион хлора также внеклеточный компонент, но его потенциальная проникающая способность через клеточную мембрану относительно высока, она не реализуется главным образом потому, что клетка имеет достаточно постоянный состав фиксированных клеточных анионов, создающих в ней преобладание отрицательного потенциала, вытесняющего хлориды. Энергия натриевого насоса обеспечивается гидролизом аденозинтрифосфата (АТФ). Эта же энергия способствует движению калия внутрь клетки.

Элементы контроля водно-электролитного баланса. В норме человек должен потреблять воды столько, сколько бывает необходимо, чтобы возместить суточную ее потерю через почки и внепочечными путями. Оптимальный суточный диурез 1400-1600 мл. При нормальных температурных условиях и нормальной влажности воздуха организм теряет через кожу и дыхательные пути от 800 до 1000 мл воды - это так называемые неощутимые потери. Таким образом, общее суточное выведение воды (моча и перспирационные потери) должно составлять 2200-2600 мл. Организм в состоянии частично покрыть свои потребности за счет использования образующейся в нем метаболической воды, объем которой составляет около 150-220 мл. Нормальная сбалансированная суточная потребность человека в воде от 1000 до 2500 мл и зависит от массы тела, возраста, пола и других обстоятельств. В хирургической и реанимационной практике существуют три варианта определения диуреза: сбор суточной мочи (при отсутствии осложнений и у легких больных), определение диуреза каждые 8 ч (у больных, получающих в течение суток инфузионную терапию любого типа) и определение часового диуреза (у больных с выраженным расстройством водно-электролитного баланса, находящихся в шоке и при подозрении на почечную недостаточность). Удовлетворительный для тяжелого больного диурез, обеспечивающий электролитное равновесие организма и полное выведение шлаков, должен составлять 60 мл/ч (1500 ± 500 мл/сут).

Олигурией считается диурез меньше 25-30 мл/ч (меньше 500 мл/сут). В настоящее время выделяют олигурию преренальную, ренальную и постренальную. Первая возникает в результате блока почечных сосудов или неадекватного кровообращения, вторая связана с паренхиматозной почечной недостаточностью и третья с нарушением оттока мочи из почек.

Клннические признаки нарушения водного баланса. При частой рвоте или диарее следует предполагать существенный водно-электролитный дисбаланс. Жажда свидетельствует о том, что у больного объем воды во внеклеточном пространстве уменьшен относительно содержания в нем солей. Больной с истинной жаждой в состоянии быстро устранить дефицит воды. Потеря чистой воды возможна у больных, которые не могут самостоятельно пить (кома и др.), а также у больных, которым резко ограничивают питье без соответствующей внутривенной компенсации Потеря возникает также при обильном потении (высокая температура), диарее и осмотическом диурезе (высокий уровень глюкозы при диабетической коме, применение маннита или мочевины).

Сухость в подмышечных и паховых областях является важным симптомом потери воды и свидетельствует о том, что дефицит ее в организме составляет минимум 1500 мл.

Снижение тургора тканей и кожи рассматривают как показатель уменьшения объема интерстициальной жидкости и потребности организма во введении солевых растворов (потребность в натрии). Язык в нормальных условиях имеет единственную более или менее выраженную срединную продольную борозду. При дегидратации появляются дополнительные борозды, параллельные срединной.

Масса тела, меняющаяся на протяжении коротких промежутков времени (например, через 1- 2 ч), является показателем изменений внеклеточной жидкости. Однако данные определения массы тела надо интерпретировать только в совместной оценке с другими показателями.

Изменения АД и пульса наблюдаются лишь при существенной потере воды организмом и в наибольшей степени связаны с изменением ОЦК. Тахикардия - довольно ранний признак снижения объема крови.

Отеки всегда отражают увеличение объема интерстициальной жидкости и указывают на то, что общее количество натрия в организме повышено. Однако отеки не всегда являются высокочувствительным показателем баланса натрия, поскольку распределение воды между сосудистым и интерсгициальным пространством обусловлено в норме высоким белковым градиентом между этими средами. Появление едва заметной ямки от надавливания в области передней поверхности голени при нормальном белковом балансе указывает на то, что в организме имеется избыток по крайней мере 400 ммолей натрия, т. е. более 2,5 л интерстициальной жидкости.

Жажда, олигурия и гипернатриемия являются главными признаками дефицита воды в организме.

Гипогидратация сопровождается снижением ЦВД, которое в ряде случаев становится отрицательным. В клинической практике нормальными цифрами ЦВД принято считать 60-120 мм вод. ст. При водной перегрузке (гипергидратация) показатели ЦВД могут значительно превышать эти цифры. Однако чрезмерное использование кристаллоидных растворов может иногда сопровождаться водной перегрузкой интерстициального пространства (в том числе и интерстициальным отеком легких) без существенного повышения ЦВД.

Потери жидкости и патологическое перемещение ее в организме. Внешние потери жидкости и электролитов могут происходить при полиурии, диарее, чрезмерном потении, а также при обильной рвоте, через различные хирургические дренажи и фистулы или с поверхности ран и ожогов кожи. Внутреннее перемещение жидкости возможно при развитии отеков в травмированных и инфицированных областях, но главным образом оно обусловлено изменением осмолярности жидкостных сред - накоплением жидкости в плевральной и брюшной полостях при плеврите и перитоните, кровопотерей в ткани при обширных переломах, перемещением плазмы в травмированные ткани при синдроме раздавливания, ожогах или в область раны.

Особым типом внутреннего перемещения жидкости является образование так называемых трансцеллюлярных бассейнов в желудочно-кишечном тракте (кишечная непроходимость, инфаркт кишечника, тяжелые послеоперационные парезы).

Область человеческого тела, куда временно перемещается жидкость, принято называть «третьим пространством» (два первых пространства - клеточный и внеклеточный водные секторы). Подобное перемещение жидкости, как правило, не вызывает существенных изменений массы тела. Внутренняя секвестрация жидкости развивается в течение 36-48 ч после операции или после начала заболевания и совпадает с максимумом метаболических и эндокринных сдвигов в организме. Затем процесс начинает медленно регрессировать.

Расстройство водного и электролитного баланса. Дегидратация. Различают три основных типа дегидратации: водное истощение, острая дегидратация и хроническая дегидратация.

Дегидратация в связи с первичной потерей воды (водное истощение) возникает в результате интенсивной потери организмом чистой воды или жидкости с малым содержанием солей, т. е. гипотоничных, например при лихорадке и одышке, при длительной искусственной вентиляции легких через трахеостому без соответствующего увлажнения дыхательной смеси, при обильном патологическом потении во время лихорадки, при элементарном ограничении водных поступлений у больных в коме и критических состояниях, а также в результате отделения больших количеств слабоконцентрированной мочи при несахарном диабете. Клинически характеризуется тяжелым общим состоянием, олигурией (при отсутствии несахарного мочеизнурения), нарастающей гипертермией, азотемией, дезориентацией, переходящей в кому, иногда судорогами. Жажда появляется, когда потеря воды достигает 2 % массы тела.

Лабораторно выявляется повышение концентрации электролитов в плазме и повышение осмолярности плазмы. Концентрация натрия в плазме повышается до 160 ммоль/л и более. Повышается также гематокрит.

Лечение заключается во введении воды в виде изотонического (5%) раствора глюкозы. При лечении всех вариантов расстройств водного и электролитного балансов с использованием различных растворов их вводят только внутривенным путем.

Острая дегидратация в результате потери внеклеточной жидкости возникает при острой обструкции привратника, тонкокишечном свище, язвенном колите, а также при высокой тонкокишечной непроходимости и других состояниях. Наблюдаются все симптомы дегидратации, прострация и кома, первоначальная олигурия сменяется анурией, прогрессирует гипотензия, развивается гиповолемический шок.

Лабораторно определяют признаки некоторого сгущения крови, особенно в поздних стадиях. Объем плазмы несколько уменьшается, повышается содержание белков в плазме, гематокрит и в некоторых случаях содержания калия в плазме; чаще, однако, быстро развивается гипокалиемия. Если больной не получает специального инфузионного лечения, содержание натрия в плазме остается нормальным. При потере большого количества желудочного сока (например, при многократной рвоте) наблюдают снижение уровня хлоридов плазмы с компенсаторным повышением содержания бикарбоната и неизбежным развитием метаболического алкалоза.

Потерянную жидкость необходимо быстро возместить. Основой переливаемых растворов должны быть изотонические солевые растворы. При компенсаторном избытке в плазме НС0 3 (алкалозе) идеальным возмещающим раствором считают изотонический раствор глюкозы с добавлением белков (альбумина или протеина). Если причиной дегидратации была диарея или тонкокишечный свищ, то, очевидно, содержание НСО 3 в плазме будет низким или близким к норме и жидкость для возмещения должна состоять на 2/3 из изотонического раствора хлорида натрия и на 1/3 из 4,5% раствора гидрокарбоната натрия. К проводимой терапии добавляют введение 1% раствора КО, вводят до 8 г калия (только после восстановления диуреза) и изотонического раствора глюкозы по 500 мл каждые 6-8 ч.

Хроническая дегидратация с потерей электролитов (хронический дефицит электролитов) возникает в результате перехода острой дегидратации с потерей электролитов в хроническую фазу и характеризуется общей дилюционной гипотонией внеклеточной жидкости и плазмы. Клинически характеризуется олигурией, общей слабостью, иногда повышением температуры тела. Жажды почти никогда не бывает. Лабораторно определяется низкое содержание натрия в крови при нормальном или слегка повышенном гематокрите. Содержание калия и хлоридов в плазме имеет тенденцию к снижению, особенно при затянувшейся потере электролитов и воды, например, из желудочно-кишечного тракта.

Лечение с использованием гипертонических растворов хлорида натрия направлено на ликвидацию дефицита электролитов внеклеточной жидкости, устранение внеклеточной жидкостной гипотонии, восстановление осмолярности плазмы и интерстициальной жидкости. Гидрокарбонат натрия назначают только при метаболическом ацидозе. После восстановления осмолярности плазмы вводят 1% раствор КС1 до 2-5 г/сут.

Внеклеточная солевая гипертония в связи с солевой перегрузкой возникает в результате чрезмерного введения в организм солевых или белковых растворов при дефиците воды. Наиболее часто развивается у больных при зондовом или трубочном питании, находящихся в неадекватном или бессознательном состоянии. Гемодинамика длительно остается ненарушенной, диурез сохраняется нормальным, в отдельных случаях возможна умеренная полиурия (гиперосмолярность). Наблюдаются высокий уровень натрия в крови при устойчивом нормальном диурезе, снижение гематокрита и повышение уровня кристаллоидов. Относительная плотность мочи нормальная или несколько повышена.

Лечение заключается в ограничении количества вводимых солей и введении дополнительного количества воды через рот (если это возможно) или парентерально в виде 5% раствора глюкозы при одновременном сокращении объема зондового или трубочного питания.

Первичный избыток воды (водная интоксикация) становится возможным при ошибочном введении в организм избыточных количеств воды (в виде изотонического раствора глюкозы) в условиях ограниченного диуреза, а также при избыточном введении воды через рот или при многократной ирригации толстого кишечника. У больных появляются сонливость, общая слабость, снижается диурез, в более поздних стадиях возникают кома и судороги. Лабораторно определяются гипонатриемия и гипоосмолярность плазмы, однако натрийурез длительно остается нормальным. Принято считать, что при снижении содержания натрия до 135 ммоль/л в плазме имеется умеренный избыток воды относительно электролитов. Главная опасность водной интоксикации - набухание и отек головного мозга и последующая гипоосмолярная кома.

Лечение начинают с полного прекращения водной терапии. При водной интоксикации без дефицита общего натрия в организме назначают форсированный диурез с помощью салуретиков. При отсутствии отека легких и нормальном ЦВД вводят 3% раствор NaCl до 300 мл.

Патология обмена электролитов. Гипонатриемия (содержание натрия в плазме ниже 135 ммоль/л). 1. Тяжелые заболевания, протекающие с задержкой диуреза (раковые процессы, хроническая инфекция, декомпенсированные пороки сердца с асцитом и отеками, заболевания печени, хроническое голодание).

2. Посттравматические и послеоперационные состояния (травма костного скелета и мягких тканей, ожоги, послеоперационная секвестрация жидкостей).

3. Потери натрия непочечным путем (многократная рвота, диарея, образование «третьего пространства» при острой кишечной непроходимости, тонкокишечные свищи, обильное потение).

4. Бесконтрольное применение диуретиков.

Поскольку гипонатриемия практически всегда является состоянием вторичным по отношению к основному патологическому процессу, то однозначного лечения его не существует. Гипонатриемию, обусловленную диареей, многократной рвотой, тонкокишечным свищом, острой кишечной непроходимостью, послеоперационной секвестрацией жидкости, а также форсированным диурезом, целесообразно лечить с использованием натрийсодержащих растворов и, в частности, изотонического раствора хлорида натрия; при гипонатриемии же, развившейся в условиях декомпенсированного порока сердца, введение в организм дополнительного натрия нецелесообразно.

Гипернатриемия (содержание натрия в плазме выше 150 ммоль/л). 1. Дегидратация при водном истощении. Избыток каждых 3 ммоль/л натрия в плазме сверх 145 ммоль/л означает дефицит 1 л внеклеточной воды К.

2. Солевая перегрузка организма.

3. Несахарный диабет.

Гипокалиемия (содержание калия ниже 3,5 ммоль/л).

1. Потеря желудочно-кишечной жидкости с последующим метаболическим алкалозом. Сопутствующая потеря хлоридов углубляет метаболический алкалоз.

2. Длительное лечение осмотическими диуретиками или салуретиками (маннит, мочевина, фуросемид).

3. Стрессовые состояния с повышенной адреналовой активностью.

4. Ограничение потребления калия в послеоперационном и посттравматическом периодах в сочетании с задержкой натрия в организме (ятрогенная гипокалиемия).

При гипокалиемии вводят раствор хлорида калия, концентрация которого не должна превышать 40 ммоль/л. В 1 г хлорида калия, из которого приготовляют раствор для внутривенного введения, содержится 13,6 ммоля калия. Суточная терапевтическая доза - 60-120 ммолей; по показаниям применяют и большие дозы.

Гиперкалиемия (содержание калия выше 5,5 ммоль/л).

1. Острая или хроническая почечная недостаточность.

2. Острая дегидратация.

3. Обширные травмы, ожоги или крупные операции.

4. Тяжелый метаболический ацидоз и шок.

Уровень калия 7 ммоль/л представляет серьезную угрозу для жизни больного в связи с опасностью остановки сердца вследствие гиперкалиемии.

При гиперкалиемии возможна и целесообразна следующая последовательность мероприятий.

1. Лазикс в/в (от 240 до 1000 мг). Считают удовлетворительным суточный диурез, равный 1 л (при нормальной относительной плотности мочи).

2. 10% раствор глюкозы в/в (около 1 л) с инсулином (1 ЕД на 4 г глюкозы).

3. Для устранения ацидоза - около 40-50 ммолей гидрокарбоната натрия (около 3,5 г) в 200 мл 5% раствора глюкозы; при отсутствии эффекта вводят еще 100 ммолей.

4. Глюконат кальция в/в для уменьшения влияния гиперкалиемии на сердце.

5. При отсутствии эффекта от консервативных мероприятий показан гемодиализ.

Гиперкальциемия (уровень кальция в плазме выше 11 мг%, или более 2,75 ммоль/л, при многократном исследовании) обычно бывает при гиперпаратиреоидизме или при метастазировании рака в костную ткань. Лечение специальное.

Гипокальциемия (уровень кальция в плазме ниже 8,5%, или менее 2,1 ммоль/л), наблюдается при гипопаратиреоидизме, гипопротеинемии, острой и хронической почечной недостаточности, при гипоксическом ацидозе, остром панкреатите, а также при дефиците магния в организме. Лечение - внутривенное введение препаратов кальция.

Гипохлоремия (хлориды плазмы ниже 98 ммоль/л).

1. Плазмодилюция с увеличением объема внеклеточного пространства, сопровождающаяся гипонатриемией у больных с тяжелыми заболеваниями, при задержке воды в организме. В отдельных случаях показан гемодиализ с ультрафильтрацией.

2. Потери хлоридов через желудок при многократной рвоте, а также при интенсивной потере солей на других уровнях без соответствующего возмещения. Обычно сочетается с гипонатриемией и гипокалиемией. Лечение - введение хлорсодержащих солей, преимущественно КСl.

3. Неконтролируемая диуретическая терапия. Сочетается с гипонатриемией. Лечение - прекращение диуретической терапии и солевое замещение.

4. Гипокалиемический метаболический алкалоз. Лечение - внутривенное введение растворов КСl.

Гиперхлоремия (хлориды плазмы выше 110 ммоль/л), наблюдается при водном истощении, несахарном диабете и повреждении ствола мозга (сочетается с гипернатрие-мией), а также после уретеросигмостомии в связи с повышенной реабсорбцией хлора в толстой кишке. Лечение специальное.

Основные физико-химические понятия:

    Осмолярность – единица концентрации вещества, отражающая его содержание в одном литре растворителя.

    Осмоляльность – единица концентрации вещества, отражающая его содержание в одном килограмме растворителя.

    Эквивалентность – показатель, использующийся в клинической практике для отражения концентрации веществ, находящихся в диссоциированной форме. Равна количеству милимоль, умноженных на валентность.

    Осмотическое давление – давление, которое необходимо приложить, чтобы остановить перемещение воды через полупроницаемую мембрану по градиенту концентрации.

В организме взрослого человека вода составляет 60% массы тела и распределена по трем основным секторам: внутриклеточному, внеклеточному и межклеточному (кишечная слизь, жидкость серозных полостей, спинномозговая жидкость). Внеклеточное пространство включает в себя внутрисосудистый и интерстициальный компартменты . Емкость внеклеточного пространства составляет 20% массы тела.

Регуляция объемов водных секторов осуществляется по законам осмоса, где основную роль играет ион натрия, а также имеют значение концентрация мочевины и глюкозы. Осмолярность плазмы крови в норме равна 282 –295 мОсм/ л . Рассчитывается она по формуле:

P осм = 2 Na + +2 К + + Глюкоза + мочевина

Приведенная формула отражает т.н. расчетную осмолярность, регулируемую через содержание перечисленных компонентов и количество воды, как растворителя.

Термин измеренная осмолярность отражает реальную величину, определенную прибором осмометром. Так, если измеренная осмолярность превышает расчетную, то в плазме крови циркулируют неучтенные осмотически активные вещества, такие, как декстран, этиловый спирт, метанол и др.

Основным ионом внеклеточной жидкости является натрий. В норме его концентрация в плазме 135-145 ммоль/л . 70% всего натрия организма интенсивно участвуют в процессах обмена и 30% связано в костной ткани. Большинство клеточных мембран непроницаемо для натрия. Его градиент поддерживается активным выведением из клеток посредством Na/K АТФ-азы

В почках 70% всего натрия реабсорбируется в проксимальных канальцах и еще 5% могут реабсорбироваться в дистальных под действием альдостерона.

В норме объем жидкости, поступающей в организм равен объему жидкости, выделяемой из него. Суточный обмен жидкости равен 2 - 2,5 литра (таблица 1).

Таблица 1. Приблизительный суточный баланс жидкости

Поступление

Выделение

путь

Количество (мл)

путь

Количество (мл)

Прием жидкостей

Перспирация

Метаболизм

Всего

2000 - 2500

Всего

2000 - 2500

Существенно увеличиваются потери воды при гипертермии (10 мл/кг на каждый градус выше 37 0 С), тахипноэ (10 мл/кг при ЧД  20), аппаратном дыхании без увлажнения.

ДИСГИДРИИ

Патофизиология нарушений водного обмена.

Нарушения могут быть связаны с дефицитом жидкости (дегидратация) или с её избытком (гипергидратация). В свою очередь каждое из вышеуказанных нарушений может быть изотоническим (с нормальной величиной осмотичности плазмы крови), гипотоническим (когда осмолярность плазмы снижена) и гипертоническим (осмолярность плазмы значительно превышает допустимые границы нормы).

Изотоническая дегидратация - отмечается как дефицит воды, так и дефицит солей. Осмолярность плазмы нормальная (270-295 мосм/л). Страдает внеклеточное пространство, оно уменьшено гиповолемия. Наблюдается у больных с потерями из ЖКТ (рвота, понос, свищи), кровопотерей, с перитонитом и ожоговой болезнью, полиурией, в случае бесконтрольного использования диуретиков.

Гипертоническая дегидратация - это состояние, характеризующееся абсолютным или преобладающим дефицитом жидкости с повышением осмолярности плазмы. Nа > 150 ммоль/л, осмолярность плазмы > 290 мосм/л. Наблюдается при недостаточном поступлении воды (неадекватное зондовое питание - на каждые 100 ккал должно быть введено 100 мл воды), гастроэнтестинальные заболевания, потери гипотонической жидкости-пневмонии, трахеобронхиты, лихорадка, трахеостомия, полиурия, осмодиурез при несахарном диабете.

Гипотоническая дегидратация - отмечается дефицит воды с преобладающей потерей электролитов. Внеклеточное пространство уменьшено, а клетки перенасыщены водой. Nа<13О ммоль/л, осмолярность плазмы < 275мосм/л. Наблюдается при состояниях, связанных с потерей солей (болезнь Аддисона, применение диуретиков, слабительных, осмодиурез, диета, бедная натрием), при введении избыточного количества инфузионных растворов, не содержащих электролиты (глюкоза, коллоиды).

Дефицит воды. Причиной дефицита воды может быть либо недостаточное поступление, либо чрезмерные потери. Недостаток поступления достаточно редко встречается в клинической практике.

Причины увеличения водных потерь:

1. Несахарный диабет

Центральный

Нефрогенный

2. Чрезмерное потоотделение

3. Профузный понос

4. Гиперветиляция

При этом происходит потеря не чистой воды, а гипотонической жидкости. Повышение осмолярности внеклеточной жидкости вызывает перемещение внутриклеточной воды в сосуды, однако, это не компенсирует гиперосмолярность полностью, что повышает содержание антидиуретического гормона (АДГ). Поскольку такая дегидратация частично компенсируется из внутриклеточного сектора, то клинические признаки будут выражены слабо. Если причиной не являются почечные потери, то моча становится концентрированной.

Центральный несахарный диабет часто возникает после нейрохирургических операций и ЧМТ. Причина – повреждение гипофиза или гипоталамуса, которое выражается в снижении синтеза АДГ. Для заболевания характерна полидипсия и полиурия без глюгозуриии. Осмолярность мочи ниже осмолярности плазмы.

Нефрогенный несахарный диабет развивается, чаще всего, вторично, как следствие хронических заболеваний почек и иногда, как побочный эффект нефротоксичных лекарств (амфотерицин В, литий, демеклоциклин, маннитол). Причина кроется в снижении чувствительности рецепторов почечных канальцев к вазопрессину. Клинические проявления заболевания такие же, а диагноз верифицируется по отсутствию снижения темпа диуреза при введении АДГ.

Дефицит натрия .

Причинами недостатка натрия может быть либо его чрезмерное выделение, либо недостаточное поступление. Выделение, в свою очередь, может происходить через почки, кишечник и кожу.

Причины дефицита натрия:

1. Потери через почки

Полиурическая фаза ОПН;

Применение диуретиков

Недостаточность минералокортикоидов

Осмодиурез (например, при сахарном диабете)

2. Потери через кожу

Дерматит;

Муковисцидоз.

3. Потери через кишечник

Кишечная непроходимость, перитонит.

4. Потери жидкости, богатой солями, возмещаемые бессолевыми растворами (профузный понос с компенсацией 5% раствором глюкозы).

Натрий может теряться в составе гипо- или изотонической жидкости. В обоих случаях происходит снижение объема внеклеточного пространства, что ведет к раздражению волюморецепторов и выделению альдостерона. Повышенная задержка натрия вызывает увеличение секреции протонов в просвет канальца нефрона и реабсорбцию ионов бикарбоната (см. почечные механизмы регуляции КЩС), т.е. вызывает метаболический алкалоз.

При потерях натрия, концентрация его в плазме не отражает общего содержания в организме, поскольку зависит от сопутствующих потерь воды. Так, ели он теряется в составе гипотонической жидкости, то плазменная концентрация будет выше нормы, при потерях в сочетании с задержкой воды – ниже. Потери равнозначных количеств натрия и воды не повлияют на его содержание в плазме. Диагностика преобладания потерь воды и натрия изложена в таблице 2.

Таблица 2. Диагностика преобладающих потерь воды или натрия

В случае преобладания потерь воды, осмолярность внеклеточной жидкости возрастает, что обуславливает переход воды из клеток в интерстиций и сосуды. Поэтому клинические признаки будут выражены менее четко.

Наиболее типичный случай – потеря натрия в составе изотонической жидкости (изотоническая дегидратация). В зависимости от степени обезвоживания внеклеточного сектора, в клинической картине выделяют три степени дегидратации (табл. 3).

Таблица 3: Клиническая диагностика степени дегидратации.

Избыток воды.

Избыток воды связан с нарушением выведения, т.е. почечной недостаточностью. Способность здоровых почек выводить воду составляет 20 мл/ч, поэтому, если их функция не нарушена, избыток воды вследствие избыточного поступления практически исключен. Клинические признаки водной интоксикации обусловлены, в первую очередь, отеком мозга. Опасность его возникновения возникает при приближении концентрации натрия к 120 ммоль/л.

Биологическая химия Лелевич Владимир Валерьянович

Глава 29. Водно-электролитный обмен

Распределение жидкости в организме

Для выполнения специфических функций клеткам необходима устойчивая среда обитания, включая стабильное обеспечение питательными веществами и постоянное выведение продуктов обмена. Основу внутренней среды организма составляют жидкости. На них приходится 60 – 65 % массы тела. Все жидкости организма распределяются между двумя главными жидкостными компартментами: внутриклеточным и внеклеточным.

Внутриклеточная жидкость – жидкость, содержащаяся внутри клеток. У взрослых на внутриклеточную жидкость приходится 2/3 всей жидкости, или 30 – 40 % массы тела. Внеклеточная жидкость – жидкость, находящаяся вне клеток. У взрослых на внеклеточную жидкость приходится 1/3 всей жидкости, или 20 – 25 % массы тела.

Внеклеточная жидкость подразделяется на несколько типов:

1. Интерстициальная жидкость – жидкость, окружающая клетки. Лимфа является интерстициальной жидкостью.

2. Внутрисосудистая жидкость – жидкость находящаяся внутри сосудистого русла.

3. Трансцеллюлярная жидкость, содержащаяся в специализированных полостях тела. К трансцеллюлярной жидкости относится спинномозговая, перикардиальная, плевральная, синовиальная, внутриглазная, а также пищеварительные соки.

Состав жидкостей

Все жидкости состоят из воды и растворенных в ней веществ.

Вода является основным компонентом человеческого организма. У взрослых мужчин вода составляет 60 % а у женщин – 55 % массы тела.

К факторам влияющим на количество воды в организме относятся.

1. Возраст. Как правило, количество воды в организме с возрастом уменьшается. У новорожденного количество воды составляет 70 % массы тела, в возрасте 6 – 12 месяцев – 60 %, у пожилого человека 45 – 55 %. Снижение количества воды с возрастом происходит вследствие уменьшения мышечной массы.

2. Жировые клетки. Содержат мало воды, поэтому количество воды в организма снижается с увеличением содержания жира.

3. Пол. Женский организм имеет относительно меньше воды, так как содержит относительно больше жира.

Растворенные вещества

В жидкостях организма содержатся два типа растворенных веществ – неэлектролиты и электролиты.

1. Неэлектролиты. Вещества, которые не диссоциируют в растворе и измеряются по массе (например мг на 100 мл). К клинически важным неэлектролитам относятся глюкоза, мочевина, креатинин, билирубин.

2. Электролиты. Вещества которые диссоциируют в растворе на катионы и анионы и их содержание измеряется в миллиэквивалент на литр [мэкв/л]. Электролитный состав жидкостей представлен в таблице.

Таблица 29.1. Основные электролиты жидкостных компартментов организма (приведены средние значения)

Содержание электролитов, мэкв/л Внеклеточная жидкость Внутриклеточная жидкость
плазма интерстициальная
Na + 140 140 10
K + 4 4 150
Ca 2+ 5 2,5 0
Cl - 105 115 2
PO 4 3- 2 2 35
HCO 3 - 27 30 10

Основными внеклеточными катионами являются Na + , Са 2+ , а внутриклеточными К + , Мg 2+ . Вне клетки преобладают анионы Сl - , НСО 3 - , а главным анионом клетки является РО 4 3- . Внутрисосудистая и интерстициальная жидкости имеют одинаковый состав, так как эндотелий капиляров свободно проницаем для ионов и воды.

Различие состава внеклеточной и внутриклеточной жидкостей обусловлено:

1. Непроницаемостью клеточной мембраны для ионов;

2. Функционированием транспортных систем и ионных каналов.

Характеристики жидкостей

Кроме состава, важное значение имеют общие характеристики (параметры) жидкостей. К ним относятся: объем, осмоляльность и рН.

Объем жидкостей.

Объем жидкости зависит от количества воды которая присутствует в данный момент в конкретном пространстве. Однако вода переходит пасивно, в основном за счет Na + .

Жидкости взрослого организма имеют объем:

1. Внутриклеточная жидкость – 27 л

2. Внеклеточная жидкость – 15 л

Интерстициальная жидкость – 11 л

Плазма – 3 л

Трансцеллюлярная жидкость – 1 л.

Вода, биологическая роль, обмен воды

Вода в организме находится в трех состояниях:

1. Конституционная (прочно связанная) воды, входит в структуру белков, жиров, углеводов.

2. Слабосвязанная воды диффузионных слоев и внешних гидратных оболочек биомолекул.

3. Свободная, мобильная вода, является средой в которой растворяются электролиты и ниэлектролиты.

Между связанной и свободной водой существует состояние динамического равновесия. Так синтез 1 г гликогена или белка требует 3 г Н 2 О которая переходит из свободного состояния в связанное.

Вода в организме выполняет следующие биологические функции:

1. Растворитель биологических молекул.

2. Метаболическая – участие в биохимических реакциях (гидролиз, гидратация, дегидратация и др.).

3. Структурная – обеспечение структурной прослойки между полярными группами в биологических мембранах.

4. Механическая – способствует сохранению внутриклеточного давления, формы клеток (тургор).

5. Регулятор теплового баланса (сохранение, распределение, отдача тепла).

6. Транспортная – обеспечение переноса растворенных веществ.

Обмен воды

Суточная потребность в воде для взрослого человека составляет около 40 мл на 1 кг массы или около 2500 мл. Время пребывания молекулы воды в организме взрослого человека составляет около 15 дней, в организме грудного ребенка – до 5 дней. В норме имеется постоянный баланс между поступлением и потерей воды (Рис. 29.1).

Рис. 29.1 Водный баланс (внешний водный обмен) организма.

Примечание. Потеря воды через кожу слагается из:

1. неощутимых потерь воды – испарение с поверхности кожи со скоростью 6 мл/кг массы/час. У новорожденных скорость испарения больше. Эти потери воды не содержат электролитов.

2. ощутимые потери воды – потоотделение, при котором теряется вода и электролиты.

Регуляция объема внеклеточной жидкости

Значительные колебания объема интерстициальной части внеклеточной жидкости могут наблюдаться без выраженного влияния на функции организма. Сосудистая часть внеклеточной жидкости менее устойчива к изменениям и должна тщательно контролироваться, чтобы ткани адекватно снабжались питательными веществами при одновременном непрерывном удалении продуктов метаболизма. Объем внеклеточной жидкости зависит от количества натрия в организме, поэтому регуляция объема внеклеточной жидкости связана с регуляцией обмена натрия. Центральное место в этой регуляции занимает альдостерон.

Альдостерон действует на главные клетки собирательных трубок, т. е. дистальную часть почечных канальцев – на тот участок в котором реабсорбируется около 90 % фильтруемого натрия. Альдостерон связывается с внутриклеточными рецепторами, стимулирует транскрипцию генов и синтез белков которые открывают натриевые каналы в апикальной мембране. В результате повышенное количество натрия входит в главные клетки и активирует Na + , К + - АТФазу базолатеральной мембраны. Усиленный транспорт К + в клетку в обмен на Na + приводит к повышенной секреции К + через калиевые каналы в просвет канальца.

Роль системы ренин-ангиотензин

Система ренин-ангиотензин играет важную роль в регуляции осмоляльности и объема внеклеточной жидкости.

Активация системы

При понижении артериального давления в приносящих артериолах почек если уменьшения содержания натрия в дистальных канальцах в гранулярных клетках юкстагломерулярного аппарата почек синтезируется и секретируется в кровь протеолитических фермент-ренин. Дальнейшая активация системы показана на рис. 29.2.

Рис. 29.2. Активация системы ренин-ангиотензин.

Предсердный натрийуретический фактор

Предсердный натриуретический фактор (ПНФ) синтезируется предсердиями (в основном правым). ПНФ является пептидом и выделяется в ответ на любые события, приводящие к увеличению объема или возрастанию давления накопления сердца. ПНФ в отличие от ангиотензина II и альдостерона снижает сосудистый объем и артериальное давление.

Гормон обладает следующими биологическими эффектами:

1. Повышает экскрецию почками натрия и воды (за счет усиления фильтрации).

2. Уменьшает синтез ренина и выброс альдостерона.

3. Снижает выброс АДГ.

4. Вызывает прямую вазодилатацию.

Нарушения водно-электролитного обмена и кислотно-основного равновесия

Обезвоживание.

Обезвоживание (дегидратация, водная недостаточность) ведет к умньшению объема внеклеточной жидкости-гиповолемии.

Развивается вследствие:

1. Аномальной потери жидкости через кожу, почки, желудочно-кишечный тракт.

2. Снижение поступления воды.

3. Перемещения жидкости в третье пространство.

Выраженное снижение объема внеклеточной жидкости может привести к гиповолемическому шоку. Продолжительная гиповлемия может вызвать развитие почечной недостаточности.

Различают 3 типа обезвоживания:

1. Изотоническое – равномерная потеря Na + и H 2 O.

2. Гипертоническое – недостаток воды.

3. Гипотоническое – недостаток жидкости с превалированием недостатка Na+.

В зависимости от типа потери жидкости дегидратация сопровождается снижением или повышением показателей осмоляльности, КОР, уровня Nа + и К + .

Отеки – одно из наиболее тяжелых нарушений водно-электролитного обмена. Отек – это избыточное накопление жидкости в интерстициальном пространстве, например на ногах или легочном интерстиции. При этом происходит набухание основного вещества соединительной ткани. Отечная жидкость всегда образуется из плазмы крови, которая в патологических условиях не в состоянии удерживать воду.

Отеки развиваются вследствие действия факторов:

1. Снижение концентрации альбуминов в плазме крови.

2. Повышение уровня АДГ, альдостерона вызывающее задержку воды, натрия.

3. Увеличение проницаемости капилляров.

4. Повышение капиллярного гидростатического давления крови.

5. Избыток или перераспределение натрия в организме.

6. Нарушение циркуляции крови (например сердечная недостаточность).

Нарушения кислотно-основного равновесия

Нарушения наступают при не способности механизмов поддержания КОР предотвращать сдвиги. Могут наблюдаться два крайних состояния. Ацидоз – повышения концентрации ионов водорода или потеря оснований приводящее к уменьшению рН. Алкалоз – возрастание концентрации оснований или снижение концентрации ионов водорода вызывающее увеличение рН.

Изменение рН крови ниже 7,0 или выше 8,8 вызывают смерть организма.

Три формы патологических состояний приводят к нарушению КОР:

1. Нарушение выведения углекислого года легкими.

2. Избыточная продукция кислых продуктов тканями.

3. Нарушения выведения оснований с мочой, фекалиями.

С точки зрения механизмов развития различают несколько типов нарушений КОР.

Дыхательный ацидоз – вызывается повышением рСО 2 выше 40мм. рт. ст за счет гиповентиляции при заболеваниях легких, ЦНС, сердца.

Дыхательный алкалоз – характеризуется снижением рСО 2 менее 40мм. рт. ст., является результатом повышения альвеолярной вентиляции и наблюдается при психическом возбуждении, заболеваниях легких (пневмонии).

Метаболический ацидоз – следствие первичного снижения бикарбоната в плазме крови, что наблюдается при накоплении нелетучих кислот (кетоацидоз, лактоацидоз), потере оснований (диарея), снижение экскреции кислот почками.

Метаболический алкалоз – возникает при увеличении уровня бикарбоната плазмы крови и наблюдается при потере кислого содержимого желудка при рвоте, использовании диуретиков, синдроме Кушинга.

Минеральные компоненты тканей, биологические функции

В организме человека обнаружено большинство элементов встречающихся в природе.

С точки зрения количественного содержания в организме их можно разделить на 3 группы:

1. Микроэлементы-содержание в организме более 10–2%. К ним относятся – натрий, калий, кальций, хлорид, магний, фосфор.

2. Микроэлементы – содержание в организме от 10–2% до 10–5%. К ним относятся – цинк, молибден, иод, медь и др.

3. Ультрамикроэлементы – содержание в организме менее 10–5%, например серебро, алюминий и др.

В клетках минеральные вещества находятся в виде ионов.

Основные биологические функции

1. Структурная – участвуют в формировании пространственной структур биополимеров и других веществ.

2. Кофакторная – участие в образовании активных центров ферментов.

3. Осмотическая – поддержание осмолярности и объема жидкостей.

4. Биоэлектрическая – генерация мембранного потенциала.

5. Регуляторная – ингибирование или активирование ферментов.

6. Транспортная – участие в переносе кислорода, электронов.

Натрий, биологическая роль, обмен, регуляция

Биологическая роль:

1. Поддержание водного баланса и осмоляльности внеклеточной жидкости;

2. Поддержание осмотического давления, объема внеклеточной жидкости;

3. Регуляция кислотно-основного равновесия;

4. Поддержание нервно-мышечной возбудимости;

5. Передача нервного импульса;

6. Вторично активный транспорт веществ через биологические мембраны.

В организме человека содержится около 100 гр натрия, который распределен преимущественно во внеклеточной жидкости. Натрий поступает с пищей в количестве 4–5 гр в сутки и всасывается в проксимальном отделе тонкой кишки. Т? (время полуобмена) для взрослых 11–13 суток. Выделяется натрий из организма с мочой (3,3 гр/сут), потом (0,9 гр/сут), калом (0,1 гр/сут).

Регуляция обмена

Основная регуляция обмена осуществляется на уровне почек. Они отвечают за экскрецию избытка натрия и способствуют его сохранению при недостатке.

Почечную экскрецию:

1. усиливают: ангиотензин-II, альдостерон;

2. уменьшает ПНФ.

Калий, биологическая роль, обмен, регуляция

Биологическая роль:

1. участие в поддержании осмотического давления;

2. участие в поддержании кислотно-основного равновесия;

3. проведение нервного импульса;

4. поддержание нервно-мышечного возбуждения;

5. сокращение мышц, клеток;

6. активация ферментов.

Калий – основной внутриклеточный катион. В организме человека содержится 140 г калия. С пищей ежесуточно поступает около 3–4 г калия, который всасывается в проксимальном отделе тонкой кишки. Т? калия – около 30 суток. Выводится с мочой (3 г/сут), калом (0,4 г/сут), потом (0,1 г/сут).

Регуляция обмена

Несмотря на небольшое содержание К + в плазме, его концентрация регулируется очень строго. Поступление К + в клетки усиливают адреналин, альдостерон, инсулин, ацидоз. Общий баланс К + регулируется на уровне почек. Альдостерон усиливает выделение К + за счет стимуляции секреции по калиевым каналам. При гипокалиемии регуляторные возможности почек ограничены.

Кальций, биологическая роль, обмен, регуляция

Биологическая роль:

1. структура костной ткани, зубов;

2. мышечное сокращение;

3. возбудимость нервной системы;

4. внутриклеточный посредник гормонов;

5. свертывание крови;

6. активация ферментов (трипсин, сукцинатдегидрогеназа);

7. секреторная активность железистых клеток.

В организме содержится около 1 кг кальция: в костях – около 1 кг, в мягких тканях, преимущественно внеклеточно – около 14 г С пищей поступает 1 г в сутки, а всасывается 0,3 г/сутки. Т? для кальция содержащегося в организме около 6 лет, для кальция костей скелета – 20 лет.

В плазме крови кальций содержится в двух видах:

1. недиффундируемый, связанный с белками (альбумином), биологически неактивный – 40 %.

2. диффундируемый, состоящий из 2-х фракций:

Ионизированный (свободный) – 50 %;

Комплексный, связанный с анионами: фосфатом, цитратом, карбонатом – 10 %.

Все формы кальция находятся в динамическом обратимом равновесии. Физиологической активностью обладает только ионизированный кальций. Кальций выделяется из организма: с калом – 0,7 г/сутки; с мочой 0,2 г/сутки; с потом 0,03 г/сутки.

Регуляция обмена

В регуляции обмена Са 2+ имеют значение 3 фактора:

1. Паратгормон – увеличивает выход кальция из костной ткани, стимулирует реабсорбцию в почках, и активируя превращение витамина D в его форму D 3 повышает всасывание кальция в кишечнике.

2. Кальцитонин – уменьшает выход Са 2+ из костной ткани.

3. Активная форма витамина D – витамин D 3 стимулирует всасывание кальция в кишечнике. В конечном итоге, действие паратгормона и витамина D направлено на повышение концентрации Са2+ во внеклеточной жидкости, в том числе в плазме, а действие кальцитонина – на понижение этой концентрации.

Фосфор, биологическая роль, обмен, регуляция

Биологическая роль:

1. образование (совместно с кальцием) структуры костной ткани;

2. строение ДНК, РНК, фосфолипидов, коферментов;

3. образование макроэргов;

4. фосфорилирование (активация) субстратов;

5. поддержание кислотно-основного равновесия;

6. регуляция метаболизма (фосфорилирование, дефосфорилирование белков, ферментов).

В организме содержится 650 г фосфора, из них в скелете – 8,5%, в клетках мягких тканей – 14%, во внеклеточной жидкости – 1 %. Поступает около 2 г в сутки, из которых всасывается до 70%. Т? кальция мягких тканей – 20 суток, скелета – 4 года. Выводится фосфор: с мочой – 1,5 г/сутки, с калом – 0,5 г/сутки, с потом – около 1 мг/сутки.

Регуляция обмена

Паратгормон усиливает выход фосфора из костной ткани и выведение его с мочой, а также увеличивает всасывание в кишечнике. Обычно концентрация кальция и фосфора в плазме крови изменяются противоположным образом. Однако не всегда. При гиперпаратиреоидизме повышаются уровни обоих, а при детском рахите снижаются концентрации обоих.

Эссенциальные микроэлементы

Эссенциальные микроэлементы – микроэлементы без которых организм не может расти, развиваться и совершать свой естественный жизненный цикл. К эссенциальным элементам относятся: железо, медь, цинк, марганец, хром, селен, молибден, иод, кобальт. Для них установлены основные биохимические процессы в которых они участвуют. Характеристика жизненно-важных микроэлементов приведена в таблице 29.2.

Таблица 29.2. Эссенциальные микроэлементы, краткая характеристика.

Микро-элемент Содержание в организме (в среднем) Основные функции
Медь 100 мг Компонент оксидаз (цитохромоксидаза), участие в синтезе гемоглобина, коллагена, иммунных процессах.
Железо 4,5 г Компонент гем-содержащих ферментов и белков (Hb, Mb и др.).
Йод 15 мг Необходим для синтеза гормонов щитовидной железы.
Кобальт 1,5 мг Компонент витамина В 12 .
Хром 15 мг Участвует в связывании инсулина с рецепторами клеточных мембран, образует комплекс с инсулином и стимулирует проявление его активности.
Марганец 15 мг Кофактор и активатор многих ферментов (пируваткиназа, декарбоксилазы, супероксиддисмутаза), участие в синтезе гликопротеинов и протеогликанов, антиоксидантное действие.
Молибден 10 мг Кофактор и активатор оксидаз (ксантиноксидаза, сериноксидаза).
Селен 15 мг Входит в состав селенопротеинов, глутатионпероксидазы.
Цинк 1,5 г Кофактор ферментов (ЛДГ, карбоангидраза, РНК и ДНК-полимеразы).
Из книги ЧЕЛОВЕК - ты, я и первозданный автора Линдблад Ян

Глава 14 Homo erectus. Развитие мозга. Зарождение речи. Интонации. Речевые центры. Глупость и ум. Смех-плач, их происхождение. Обмен информацией в группе. Homo erectus оказался весьма пластичным «прачеловеком»: за миллион с лишним лет своего существования он все время

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

ОБМЕН УГЛЕВОДОВ Следует еще раз подчеркнуть, что процессы, происходящие в организме, представляют собой единое целое, и только для удобства изложения и облегчения восприятия рассматриваются в учебниках и руководствах в отдельных главах. Это относится и к разделению на

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Глава 2. Что такое энергетический обмен? Как клетка получает и использует энергию Чтобы жить, надо работать. Эта житейская истина вполне приложима к любым живым существам. Все организмы: от одноклеточных микробов до высших животных и человека - непрерывно совершают

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

16. Обмен веществ и превращение энергии. Энергетический обмен Вспомните!Что такое метаболизм?Из каких двух взаимосвязанных процессов он состоит?Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?Обмен веществ и

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

7.6. Азотный обмен Азот, углерод, кислород и водород являются основообразующими химическими элементами, без которых (хотя бы в пределах нашей солнечной системы) не возникла бы жизнь. Азот в свободном состоянии обладает химической инертностью и является самым

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Обмен веществ Наши болезни все те же, что и тысячи лет назад, но врачи подыскали им более дорогие названия. Народная мудрость - Повышенный уровень холестерина может наследоваться - Ранняя смертность и гены ответственны за утилизацию холестерина - Наследуется ли

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 10. Энергетический обмен. Биологическое окисление Живые организмы с точки зрения термодинамики – открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики. Каждое органическое

Из книги автора

Обмен витаминов Ни один из витаминов не осуществляет свои функции в обмене веществ в том виде, в котором он поступает с пищей. Этапы обмена витаминов:1. всасывание в кишечнике с участием специальных транспортных систем;2. транспорт к местам утилизации или депонирования с

Из книги автора

Глава 16. Углеводы тканей и пищи – обмен и функции Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде

Из книги автора

Глава 18. Обмен гликогена Гликоген – основной резервный полисахарид в животных тканях. Он представляет собой разветвленный гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках?-1,4-гликозидными связями, а в точках ветвления – ?-1,6- гликозидными

Из книги автора

Глава 20. Обмен триацилглицеролов и жирных кислот Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования энергии. ТАГ (нейтральные жиры) – наиболее выгодная и основная форма депонирования энергии.

Из книги автора

Глава 21. Обмен сложных липидов К сложным липидам относят такие соединения, которые, помимо липидного, содержат и нелипидный компонент (белок, углевод или фосфат). Соответственно существуют протеолипиды, гликолипиды и фосфолипиды. В отличие от простых липидов,

Из книги автора

Глава 23. Обмен аминокислот. Динамическое состояние белков организма Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и

Из книги автора

Глава 26. Обмен нуклеотидов Практически все клетки организма способны к синтезу нуклеотидов (исключение составляют некоторые клетки крови). Другим источником этих молекул могут быть нуклеиновые кислоты собственных тканей и пищи, однако эти источники имеют лишь

Регуляция водно-солевого обмена, как и большинство физиологичес-ких регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппара-тов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава. В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Так, при увеличении концентрации электролитов и уменьшении объема циркулирующей жидкости (гиповолемии) появляется чувство жажды, а при увеличении объема циркулирующей жидкости (гиперволемии) оно уменьшается. Следствием центрального анализа является изменение питьевого и пищевого по-ведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эффе-рентные звенья регуляции. Последние представлены нервными и, в большей мере, гормональными влияниями. Увеличение объема циркулирующей жидкости за счет повышенного содержания воды в крови (гидремия) может быть компенсаторным, возникающим, например, после массивной кровопотери. Гидремия с аутогемодиллюцией представляет собой один из механизмов восстановления соответствия объема циркулирующей жидкости емкости сосудистого русла. Патологическая гидремия является следствием нарушения водно-солевого обмена, например при почечной недостаточности и др. У здорового человека может развиться кратковременная физиологическая гидремия после приема больших количеств жидкости.

Помимо перманентного обмена водой между организмом и окружающей средой важное значение имеет обмен водой между внутриклеточным, внеклеточным сектором и плазмой крови. Следует отметить, что механизмы водно-электролитного обмена между секторами не могут быть сведены только к физико-химическим процессам, так как распределение воды и электролитов связано также с особенностями функционирования мембран клеток. Наиболее динамичным является интерстициальный сектор, на котором прежде всего отражаются потеря, накопление и перераспределения воды и сдвиги электролитного баланса. Важными факторами, влияющими на распределение воды между сосудистым и интерстициальным секторами является степень проницаемости сосудистой стенки, а также соотношение и взаимодействие гидродинамических давлений секторов. В плазме содержание белков равна 65-80 г/л, а в интерстициальном секторе только 4 г\л. Это создает постоянную разность коллоидно-осмотического давления между секторами, обеспечивающую удержание воды в сосудистом русле. Роль гидродинамического и онкотического факторов в обмене воды между секторами была показана еще в 1896г. американским физиологом Э. Старлингом: переход жидкой части крови в межтканевое пространство и обратно обусловлен тем, что в артериальном капиллярном русле эффективное гидростатическое давление выше, чем эффективное онкотическое давление, а в венозном капилляре - наоборот.

Гуморальная регуляция водно-электролитного баланса в организме осуществляется следующими гормонами:

Антидиуретический гормон (АДГ, вазопрессин), воздействует на собирательные трубочки и дистальные канальцы почек, увеличивая реабсорбцию воды;
- натриуретический гормон (предсердный натриуретический фактор, ПНФ, атриопептин), расширяет приносящие артериолы в почках, что увеличивает почечный кровоток, скорость фильтрации и экскрецию Na+; ингибирует выделение ренина, альдостерона и АДГ;
- ренин-ангиотензин-альдостероновая система стимулирует реабсорбцию Na+ в почках, что вызывает задержку NaCl в организме и повышает осмотическое давление плазмы, что определяет задержку выведения жидкости.

- паратиреоидный гормон увеличивает абсорбцию калия почками и кишечником и выведение фосфатов и увеличение реабсорбции кальция.

Содержание натрия и организме регулируется в основном почками под контролем ЦНС через специфические натриорецепторы. реагирующие на изменение содержания натрия в жидкостях тела, а также волюморецепторы и осморецепторы, реагирующие на изменение объема циркулирующей жидкости и осмотического давления внеклеточной жидкости соответственно. Содержание натрия в организме контролируется ренин-ангиотензинной системой, альдостероном, натрийуретическими факторами. При уменьшении содержания воды в организме и повышении осмотического давления крови усиливается секреция вазопрессина (антидиуретического гормона), который вызывает увеличение обратною всасывания воды в почечных канальцах. Увеличение задержки натрия почками вызывает альдостерон, а усиление выведения натрия — натрийуретические гормоны, или натрийуретические факторы (атриопептиды, простагландины, уабаинподобное вещество).

Состояние водно-солевого обмена в значительной степени определяет содержание ионов Cl- во внеклеточной жидкости. Из организма ионы хлора выводятся в основном с мочой, желудочным соком, потом. Количество экскретируемого хлорида натрия зависит от режима питания, активной реабсорбции натрия, состояния канальцевого аппарата почек, кислотно-щелочного состояния. Обмен хлора в организме пассивно связан с обменом натрия и регулируется теми же нейрогуморальными факторами. Обмен хлоридов тесно связан с обменом воды: уменьшение отеков, рассасывание транссудата, многократная рвота, повышенное потоотделение и др. сопровождаются увеличением выведения ионов хлора из организма.

Баланс калия в организме поддерживается двумя способами:
изменением распределения калия между внутри- и внеклеточным компартментами, регуляцией почечной и внепочечной экскреции ионов калия.
Распределение внутриклеточного калия по отношению к внеклеточному поддерживается прежде всего Na-K-АТФазой, являющейся структурным компонентом мембран всех клеток организма. Поглощения калия клетками против градиента концентрации инициируют инсулин, катехоламины, альдостерон. Известно, что ацидоз способствует выходу калия из клеток, алкалоз — перемещению калия внутрь клеток.

Экскретируемая почками фракция калия обычно составляет приблизительно 10-15 % от всего фильтруемого калия плазмы. Задержка в организме или выделение калия почкой определяется тем, каково направление транспорта калия в связующем канальце и собирательной трубке коры почек. При высоком содержании калия в пище эти структуры секретируют его, а при низком - секреция калия отсутствует. Помимо почек калий выводится желудочно-кишечным трактом и при потоотделении. При обычном уровне ежедневного потребления калия (50-100 ммоль/сут) приблизительно 10 % удаляются со стулом.

Главные регуляторы обмена кальция и фосфора в организме: витамин D, паратгормон и кальцитонин. Витамин D (в результате преобразований в печени образуется витамин D3, в почках — кальцитриол) увеличивает всасывание кальция в пищеварительном тракте и транспорт кальция и фосфора к костям. Паратгормон выделяется при снижении уровня кальция в сыворотке крови, высокий же уровень кальция тормозит образование паратгормона. Паратгормон способствует повышению содержания кальция и снижению концентрации фосфора в сыворотке крови. Кальций резорбируется из костей, также увеличивается его всасывание в пищеварительном тракте, а фосфор удаляется из организма с мочой. Паратгормон также необходим для образования активной формы витамина D в почках. Увеличение уровня кальция в сыворотке крови способствует выработке кальцитонина. В противоположность паратгормону он вызывает накопление кальция в костях и снижает его уровень в сыворотке крови, уменьшая образование активной формы витамина D в почках. Увеличивает выделение фосфора с мочой и снижает его уровень в сыворотке крови.

Водно-солевым обменом называют совокупность процессов поступ­ления воды и электролитов в организм, распределения их во внут­ренней среде и выделения из организма.

Водно-солевой обмен в организме человека

Водно-солевым обменом называют совокупность процессов поступ­ления воды и электролитов в организм, распределения их во внут­ренней среде и выделения из организма.

У здорового человека поддерживается равенство объемов выделяющейся из организма и поступившей в него за сутки воды , что называют водным балансом организма. Можно рассматривать также и баланс электролитов - натрия, калия, кальция и т.п. Средние показатели водного баланса здорового человека в состоянии покоя показаны в табл. 12.1, а ба­ланса электролитов в табл. 12.2.

Средние величины параметров водного баланса организма человека

Таблица 12.1. Средние величины параметров водного баланса организма человека (мл/сут)

Потребление и образование воды

Выделение воды

Питье и жидкая пища

1200

С мочой

1500

Твердая пища

1100

С потом

500

Эндоген­ная «вода окисления»

300

С выдыхаемым воздухом

400

С калом

100

Итого Поступление

2500

Итого Выделение

2500

Внутренний цикл жидкостей желудочно-кишечного тракта (мл/сут)

Секреция

Реабсорбция

Слюна

1500

Желудочный сок

2500

Желчь

500

Сок pancreas

700

Кишечный сок

3000

Итого

8200

8100

Итого 8200 - 8100 = вода в кале 100 мл

Среднесуточный баланс обмена некоторых веществ у человека

Таблица 12.2 Среднесуточный баланс обмена некоторых веществ у человека

Вещества

Поступление

Выделение

пища

метаболизм

моча

фекалии

пот и воздух

Натрий (ммоль)

155

150

2,5

2,5

Калий (ммоль)

5,0

Хлорид (ммоль)

155

150

2,5

2,5

Азот (г)

Кислоты (мэкв)

нелетучие

летучие

14000

14000

При различных возмущающих воздействиях (сдвиги температуры среды, разный уровень физической активности, изменение характера питания) отдельные показатели баланса могут меняться, но сам баланс при этом сохраняется.

В условиях патологии происходят нарушения баланса с преобладанием либо задержки, либо потерь воды.

Вода организма

Вода является важнейшим неорганическим компонентом организма, обеспечивающим связь внешней и внутренней среды, транспорт веществ между клетками и органами. Являясь растворителем орга­нических и неорганических веществ, вода представляет собой ос­новную среду развертывания метаболических процессов. Она входит в состав различных систем органических веществ.

Каждый грамм гликогена, например, содержит 1,5 мл воды, каждый грамм белка - 3 мл воды.

При ее участии формируются такие структуры как кле­точные мембраны, транспортные частицы крови, макромолекулярные и надмолекулярные образования.

В процессе обмена веществ и окислении водорода , отделенного от субстрата, образуется эндоген­ная «вода окисления» , причем ее количество зависит от вида рас­падающихся субстратов и уровня обмена веществ.

Так, в покое при окислении:

  • 100 г жира образуется более 100 мл воды,
  • 100 г белка - около 40 мл воды,
  • 100 г углеводов - 55 мл воды.

Повышение катаболизма и энергетического обмена ведет к резкому увеличению образуемой эндогенной воды.

Однако, эндогенной воды у человека недостаточно для обеспечения водной среды метаболических процессов, особенно выведения в растворенном виде продуктов метаболизма.

В частности, повышение потребления белков и, соответственно, конечное превращение их в мочевину, удаляемую из организма с мочой, ведет к абсолютной необходимости возрастания потерь воды в почках, что требует по­вышенного ее поступления в организм.

При питании преимуще­ственно углеводной, жировой пищей и небольшом поступлении в организм NaCl потребность организма в поступлении воды меньше.

    У здорового взрослого человека суточная потребность в воде колеб­лется от 1 до 3 л.

    Общее количество воды в организме составляет у человека от 44 до 70% массы тела или примерно 38-42 л.

    Содержание ее в разных тканях варьирует от 10% в жировой ткани до 83-90% в почках и крови, с возрастом количество воды в организме уменьшается, так­же как и при ожирении.

    У женщин содержание воды ниже, чем у мужчин.

Вода организма образует два водных пространства:

1. Внутриклеточное (2/3 обшей воды).

2. Внеклеточное (1/3 общей воды).

3. В ус­ловиях патологии появляется третье водное пространство - вода полостей тела: брюшной, плевральной и т.д.

Внеклеточное водное пространство включает два сектора:

1. Внутрисосудистый водный сектор, т.е. плазму крови, объем которой составляет около 4- 5% массы тела.

2. Интерстициальный водный сектор, содержащий 1/4 всей воды организма (15% массы тела) и являющийся наиболее подвижным, меняющим объем при избытке или недостатке воды в теле.

Вся вода организма обновляется примерно через месяц, а внеклеточное водное пространство - за неделю.

Гипергидратация организма

Избыточное поступление и образование воды при неадекватно малом ее выделении из организма ведет к накоплению воды и этот сдвиг водного баланса получил название гипергидратация .

При ги­пергидратации вода накапливается, в основном, в интерстициальном водном секторе.

Водная интоксикация

Значительная степень гипергидратации проявляется водной интоксикацией.

При этом в интерстициальном водном сек­торе осмотическое давление становится ниже, чем внутри клеток, они поглощают воду, набухают и осмотическое давление в них ста­новится тоже сниженным.

В результате повышенной чувствитель­ности нервных клеток к уменьшению осмолярности водная интоксикация может сопровождаться возбуждением нервных центров и мышечными судорогами.

Дегидратация организма

Недостаточное поступление и образование воды или чрезмерно большое ее выделение приводят к уменьшению водных пространст в, главным образом, интерстициального сектора, что носит название дегидратация .

Это сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики.

Недостаток в организме воды в объеме 20% массы тела ведет к летальному ис­ходу.

Регуляция водного баланса организма

Система регуляции водного баланса обеспечивает два основных гомеостатических процесса:

    во-первых, поддержание постоянства общего объема жидкости в организме и,

    во-вторых, оптимальное распределение воды между водными пространствами и секторами организма.

К числу факторов поддержания водного гомеостазиса относятся осмотическое и онкотическое давление жидкостей водных пространств, гидростатическое и гидродинамическое давление крови, проницаемость гистогематических барьеров и других мембран, ак­тивный транспорт электролитов и неэлектролитов, нейро-эндокрин­ные механизмы регуляции деятельности почек и других органов выделения, а также питьевое поведение и жажда.

Водно солевой обмен

Водный баланс организма тесно связан с обменом электролитов . Суммарная концентрация минеральных и других ионов создает оп­ределенную величину осмотического давления.

Концентрация от­дельных минеральных ионов определяет функциональное состояние возбудимых и невозбудимых тканей, а также состояние проница­емости биологических мембран,- поэтому принято говорить о водно-электролитном (или солевом) обмене .

Водно электролитный обмен

Поскольку синтез ми­неральных ионов в организме не осуществляется, они должны по­ступать в организм с пищей и питьем. Для поддержания электро­литного баланса и, соответственно, жизнедеятельности, организм в сутки должен получать примерно 130 ммоль натрия и хлора, 75 ммоль калия, 26 ммоль фосфора, 20 ммоль кальция и других эле­ментов.

Роль электролитов в жизнедеятельности организма

Для гомеостаза электролитов необходимо взаимодействие несколь­ких процессов: поступление в организм, перераспределение и депо­нирование в клетках и их микроокружении, выделение из организ­ма.

Поступление в организм зависит от состава и свойств пищевых продуктов и воды, особенностей их всасывания в желудочно-ки­шечном тракте и состояния энтерального барьера . Однако, несмотря на широкие колебания количества и состава пищевых веществ и воды, водно-солевой баланс в здоровом организме неуклонно под­держивается за счет изменений экскреции с помощью органов вы­деления. Основную роль в этом гомеостатическом регулировании выполняют почки.

Регуляция водно-солевого обмена

Регуляция водно-солевого обмена, как и большинство физиологичес­ких регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппара­тов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава.

В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Следствием центрального анализа является изменение питьевого и пищевого по­ведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эффе­рентные звенья регуляции. Последние представлены нервными и, в большей мере, гормональными влияниями. опубликовано