Реферат: Стволовые клетки. Перспективы и возможности их практического использования

Эмбриональные стволовые клетки (ЭСК) являются классическими стволовыми клетками, поскольку они способны к бесконечному самообновлению и имеют мультипотентный дифференцировочный потенциал. Их источником обычно являются первичные половые клетки, внутренняя клеточная масса бластоцисты или отдельные бластомеры зародышей 8-клеточной стадии, а также клетки морулы более поздних стадий.

Эмбриональным стволовым клеткам свойственна самая большая из всех категорий стволовых клеток теломеразная активность, которая обеспечивает им способность к беспрецедентному самообновлению (больше 230 клеточных удвоений в пробирке; тогда как дифференцированные клетки делятся примерно 50 раз в течение жизни).

В лабораторных условиях эти клетки способны дифференцироваться в различные типы как эмбриональных клеток, так и клеток взрослого организма. Они обладают нормальным кариотипом и в контролируемых условиях могут быть клонированы и многократно воспроизведены без изменения их свойств.

Исследования показали, что трансплантация ЭСК эффективна для лечения патологий, в основе которых лежит нарушение функций или гибель специализированных типов клеток. Так, болезнь Паркинсона, вызываемая прогрессивной дегенерацией и утратой дофамин-продуцирующих нейронов определенной зоны головного мозга, может успешно лечиться при помощи интрацеребральной инъекции эмбриональных нейронов. Также при сахарном диабете I типа (вызываемом нарушением работы островковых клеток поджелудочной железы) имплантация в печень островковых клеток поджелудочной железы приводит к нормализации уровня глюкозы. С помощью трансплантации ЭСК поддаются лечению и другие трудноизлечимые заболевания - например, мышечная дистрофия Дюшенна, дегенерация клеток Пуркинье. Трансплантация ЭСК эффективна и в случае травм - в частности, травм спинного мозга.

На первый взгляд, ЭСК наиболее подходят для использования в репаративной медицине. Однако хорошо известно, что при трансплантации в организм ЭСК способны порождать новообразования - тератомы. Поэтому перед применением ЭСК в клеточной терапии необходимо провести их дифференцировку в нужном направлении и убрать из популяции ЭСК клетки, потенциально способные привести к образованию тератом. Еще одна проблема, которую приходится преодолевать при использовании ЭСК - необходимость так или иначе обеспечить их гистосовместимость с организмом реципиента. Наконец, трудно оставить без внимания этическую сторону использования клеток эмбрионов человека для получения ЭСК.

Стволовые клетки взрослого организма

Стволовые клетки присутствуют во многих органах и тканях взрослых млекопитающих: в костном мозге, крови, скелетных мышцах, зубной пульпе, печени, коже, желудочно-кишечном тракте, поджелудочной железе. Большинство этих клеток слабо охарактеризованы. По сравнению с ЭСК, стволовые клетки взрослого организма имеют меньшую способность к самоподдержанию, и хотя они дифференцируются во множество клеточных линий, но не обладают мультипотентностью. Теломеразная активность и, соответственно, пролиферативный потенциал у стволовых клеток взрослого организма высоки, но все же ниже, чем у ЭСК.

Предполагается, что наименее дифференцированные стволовые клетки находятся в организме в состоянии покоя. В случае необходимости запускается необратимый процесс их поэтапного созревания в определенном направлении дифференцировки.

Стволовые кроветворные клетки

Из стволовых клеток взрослого организма наиболее хорошо охарактеризованы стволовые кроветворные клетки (СКК). Это клетки мезодермального происхождения. Они дают начало всем видам кроветворных и лимфоидных клеток. В норме кроветворение в организме, по-видимому, поддерживается в основном за счет постоянно сменяемого небольшого числа относительно короткоживущих клеточных клонов. In vitro стволовые кроветворные клетки при определенных условиях способны к самоподдержанию и могут быть простимулированы к дифференцировке в направлении тех же клеточных линий, что и in vivo.

Уже несколько десятков лет ткани костного мозга успешно применяют для лечения различных заболеваний крови (например, лейкозов), а также радиационных поражений организма, восстанавливая с их помощью нарушенные функции кроветворных и лимфоидных органов. Для этого обычно проводится трансплантация костного мозга; в последнее время используется и пуповинная кровь. Популяция СКК служит потенциальным источником для предшественников эндотелиальных клеток, что делает возможным применение СКК для лечения ишемической болезни и инфаркта миокарда.

Стволовые клетки нервной ткани

Еще одна категория клеток, которая в настоящее время интенсивно изучается, - это стволовые клетки нервной ткани (СКНТ). Эти клетки первоначально были найдены в субвентрикулярной зоне эмбрионального головного мозга. До недавнего времени считалось, что головной мозг взрослого организма не содержит стволовых клеток. Однако эксперименты на грызунах и приматах, а также клинические испытания с привлечением волонтеров показали, что СКНТ продолжают присутствовать и во взрослом головном мозге. In vitro стволовые клетки нервной ткани могут быть «нацелены» как на пролиферацию, так и на дифференцировку в различные типы нейронов и клетки глии (опорные и защитные клетки нервной ткани). Как эмбриональные СКНТ, так и СКНТ взрослого организма, трансплантированные в головной мозг, могут генерировать нейрональные и глиальные клетки. Хотя неизвестно, какова продолжительность самообновления стволовых клеток нервной ткани, в лабораторных условиях их можно культивировать в течение длительного периода.

Стромальные клетки-предшественники и мезенхимальные стволовые клетки

Стромальные клетки-предшественники и мезенхимальные стволовые клетки (МСК) были открыты около 30 лет назад. Это своего рода универсальные клетки, которые содержатся в костном мозге, в своеобразном депо, где они хранятся «про запас». Они способны к интенсивной пролиферации, могут дифференцироваться во многие клеточные типы и трансплантабельны in vivo. При необходимости они поступают в поврежденный орган или ткань и превращаются в нужные специализированные клетки.

In vitro численность мезенхимальных стволовых клеток может увеличиваться в 100000 раз в течение 6–8 недель, при этом они остаются в недифференцированном состоянии. Каждая колония стромальных клеток является клоном, то есть образуется путем пролиферации одной клетки, которая была названа колонеобразующей клеткой фибробластов (КОК-Ф). У животных и человека в физиологических условиях величина эффективности клонирования КОК-Ф колоний остается относительно стабильной и является важным параметром скелетного статуса, что указывает на роль КОК-Ф в патофизиологии дефектов кости и костного мозга.

Получено много данных о том, что в противоположность кроветворным стволовым клеткам костномозговые КОК-Ф представляют собой местную популяцию, то есть не мигрируют из одной части организма в другую и, соответственно, не приживаются при инфузии. Жаль, если эта проблема не найдет своего решения - ведь для лечения таких распространенных костных заболеваний, как остеопороз или незавершенный остеогенез, когда нельзя трансплантировать генетически измененные стромальные клетки во все области поражений, возможность их доставки через циркулирующую систему выглядит очень желательной. В целом же, вопрос о возможности миграции стромальных клеток, а также о факторах, благоприятствующих ей, остается открытым.

Стромальные клетки-предшественники выполняют также очень важную роль, обеспечивая специфическое микроокружение, необходимое для пролиферации и дифференцировки гемопоэтических и иммунокомпетентных клеток на территории кроветворных и лимфоидных органов. Таким образом, «корректировка» нарушений микроокружения в принципе может проводиться именно через эту категорию клеток.

Значительный интерес для клинического применения представляют мезенхимальные стволовые клетки, которые входят в состав популяции стромальных клеток-предшественников (или колонеобразующих клеток стромальных фибробластов - КОК-Ф) костного мозга. Их использование началось с успешного лечения несросшихся костных переломов размноженными в культурах аутологическими стромальными клетками костного мозга. До сих пор репарация костной и хрящевой ткани остается одной из наиболее важных областей применения МСК. С помощью трансплантации этих клеток удалось добиться успехов в лечении тяжелого контингента больных с ложными суставами, несросшимися переломами и хроническим остеомиелитом, остеоартритом. Принципы применяемых при этом биотехнологичеких методов являются универсальными и могут использоваться также для лечения больных с дефектами костной ткани различной локализации (травматология, ортопедия, нейрохирургия, черепно-лицевая хирургия, стоматология-имплантология).

Как возможные носители рекомбинантной ДНК, мезенхимальные стволовые клетки также представляют собой весьма привлекательный объект для генной инженерии, для лечения ряда дегенеративных и наследственных заболеваний.

Клетки костного мозга и МСК могут быть использованы и в терапии ишемической болезни сердца, поражений конечностей и головного мозга, а также для лечения инфарктов миокарда. Это еще одна область применения МСК, которая находится на стадии предклинических испытаний. В лабораторных исследованиях, проведенных на животных, и при лечении инфарктов миокарда у людей, костномозговые СК трансплантировались в область инфаркта либо прямой инъекцией, либо посредством их внутрисосудистого введения. В результате удалось достичь реального уменьшения зоны инфаркта. Однако прежде, чем терапия СК взрослого организма будет осуществляться в полном объеме, необходимо дополнительное проведение клинических испытаний и хорошо спланированных клинических исследований, которые позволят сделать окончательное заключение о безопасности и эффективности предложенного метода.

Особый интерес представляют первые данные, показывающие возможность использования костномозговых стромальных клеток при репарационных процессах в коже. В частности, исследования показывают, что после внутрикожного введения стромальных клеток костного мозга регенерация поврежденной кожной ткани шла более упорядоченно с меньшими нежелательными последствиями, к которым относится образование рубца.

Надо отметить, что для успеха лечения ключевым моментом остается и правильный выбор метода трансплантации СК. В ряде лабораторий сейчас работают также над улучшением способов очистки популяций СК и обогащения их ранними предшественниками, чтобы создать условия для более эффективной клеточной терапии. Согласно общему мнению, требуются также дальнейшие лабораторные исследования для изучения феномена пластичности стволовых клеток, а также многих других аспектов.

Как видим, со стволовыми клетками связано много надежд и ожиданий. Возможно, уже не за горами время, когда открытые свойства стволовых клеток и те, которые находятся сегодня для нас пока за семью печатями, создадут новые перспективы для лечения ряда серьезных заболеваний.

Чем уникальны стволовые клетки

В процессе развития эмбриона человека происходит ряд ключевых событий: за оплодотворением яйцеклетки следует т. н. дробление, суть которого сводится к быстрому накоплению тотипотентного (т. е. способного к созданию целого организма, повторению эмбриогенеза из одной клетки) клеточного материала.

Примерно после 12 клеточных делений этот процесс резко замедляется, и нарушается синхронность делений. Начинается транскрипция генома зародыша, то есть реализация наследственной информации. Это изменение, известное как переход к средней бластуле, по всей вероятности, отражает истощение определенного компонента материнского происхождения, который используется для связывания с вновь синтезируемой ДНК.

Транскрипция завершается тем, что в цитоплазме этих уникальных первичных клеток накапливается информация в форме матричных РНК, которая определяет дальнейшее внутриутробное развитие. Реализация информации осуществляется в конечном итоге путем миграции, специализации клеток и формирования основных зародышевых листков - эктодермы (источник клеток кожи, ЦНС и пр.), мезодермы (источник клеток мышц, костей, крови и пр.) и энтодермы (источник клеток желез, ЖКТ и пр.), что происходит в процессе т. н. гаструляции.

Начиная с этого момента, в каждой ткани сохраняются ограниченные количества неспециализированных клеток. Такие клетки называют стволовыми клетками или клетками-предшественниками, их основная функция - управление процессом создания организма в целом, перенос и реализация наследственных программ.

Стволовые клетки - это недифференцированные, незрелые клетки эмбриона, плода, новорожденного или взрослого организма, способные к самообновлению и дифференцировке в различные типы тканей и органов. В организме взрослого человека они исполняют роль «машин регенерации», их цель - поддержание морфофункционального постоянства ткани, они имеют меньший потенциал, чем в самом начале эмбриогенеза, но способны эффективно замещать поврежденные элементы специализированной ткани в необходимом объеме. Практически для каждого типа тканей существуют свои собственные клетки-предшественники (предифференцированные клетки). Истинные плюрипотентные (способные к дифференцировке в клетки разных тканей разных зародышевых листков) клетки в нормальных условиях в организме встречаются крайне редко, их выделение из взрослого организма в настоящий момент без применения методик клонирования не представляется возможным.

В процессе старения количество изначально заложенной регенерационной информации в клетках стремительно снижается, уменьшается количество самих стволовых клеток. Истощенная репарационная система становится малоэффективной - возникает ряд заболеваний, ассоциированных со старением: увядает кожа, снижается эластичность хрящей, плотность костей, повреждается эндотелий сосудов - ухудшается кровоснабжение, постепенно все ткани организма попадают в условия сниженного снабжения кислородом, ускоряются процессы замещения функционально активных тканей на неполноценные соединительные стромальные ткани. Воздействие ряда инфекций, реализация врожденных, наследственных и мультифакториальных заболеваний, хронические интоксикации (в том числе, алкогольные), травмы также приводят к подобным последствиям - организм оказывается неспособным справиться с нарастающим потоком проблем и постепенно погибает.

Успех трансплантации органов и тканей человека открыл новую эру в медицине - продемонстрирована принципиальная возможность замены дефектных тканей и органов пациента на донорские, здоровые. К сожалению, трансплантация органов остается малодоступной, сопровождается сложными оперативными вмешательствами и требует постоянной иммуносупрессии в большом объеме.

Ученые всего мира интенсивно работают над проблемой лабораторного получения клеток-предшественников с целью их последующей имплантации для замещения погибших тканей, что, по мнению медицинского научного сообщества, может послужить альтернативой трансплантации органов. В 1998 году американским ученым Джону Герхарту и Джеймсу Томпсону впервые в лабораторных условиях удалось получить и нарастить культуры эмбриональных стволовых клеток и половых прогениторных клеток, способных полностью повторить эмбриогенез. Таким образом, у человечества появилась реальная возможность в лабораторных условиях выращивать необходимое количество «запчастей» для организма и тем самым корригировать последствия ряда хронических и острых заболеваний. Дм. Шаменков, к.м.н.

Пластичность стволовых клеток

До недавнего времени считалось, что органоспецифические стволовые клетки могут дифференцироваться только в клетки соответствующих органов. Однако, по ряду данных, это не так: существуют органоспецифические стволовые клетки взрослых животных, которые способны к дифференцировке в клетки органов, отличных от органов происхождения стволовых клеток, даже если они онтогенетически принадлежат к разным зародышевым листкам. Это свойство стволовых клеток получило название пластичности. Так, существует много данных, что МСК костного мозга обладают широкой пластичностью и способны давать начало некоторым элементам нервной ткани, кардиомиоцитам, эпителиальным клеткам, гепатоцитам.

Альтернативная гипотеза феномена пластичности заключается в том, что мультипотентные стволовые клетки и после рождения присутствуют в различных органах и стимулируются к специфической пролиферации и дифференцировке в ответ на локальные факторы, представленные тем органом, в который рекрутированы стволовые клетки. Также есть предположение, что стволовые клетки рекрутируются в поврежденные органы и уже там реализуют свои свойства пластичности, т. е. дифференцируются в нужном для их восстановления направлении.

Вместе с тем нельзя не отметить, что ряд ученых подвергает сомнению саму концепцию пластичности стволовых клеток, указывая на то, что соответствующие эксперименты были выполнены на чистых популяциях тканевоспецифических стволовых клеток.

Словарь

Диплоидная клетка (от греч. diplуos - двойной и еidos - вид) - клетка с двумя гомологичными (подобными) наборами хромосом. Диплоидны все зиготы и, как правило, клетки большинства тканей животных и растений, кроме половых клеток.

Дифференцировочный потенциал - способность к превращению в разнообразные клетки организма.

Кариотип (от греч. kаryon - орех и typos - отпечаток, форма) - типичная для вида совокупность морфологических типов хромосом (форма, размер, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе. Для определения кариотипа используют микрофотографию хромосом делящихся клеток.

Мезодерма - средний зародышевый листок у большинства многоклеточных животных и человека. Из него развиваются органы крово– и лимфообразования, органы выделения, половые органы, мышцы, хрящи, кости и др.

Мультипотентность - способность к дифференцировке в пределах одного зародышевого листка.

Плюрипотентность - способность к дифференцировке разных тканей разных зародышевых листков.

Полипотентность - способность генома стволовых клеток взрослого организма изменять профиль дифференцеровки при трансплантации в новую ткань реципиента.

Строма (от греч. stroma - подстилка) - основная опорная структура органов, тканей и клеток живых организмов и растений.

Стромальные клетки - клетки соединительнотканной опорной структуры органа.

Теломеры - специализированные ДНК-белковые структуры, которые находятся на концах линейных хромосом эукариот.

Теломеразная активность - активность теломеразы, фермента, который с помощью особого механизма синтезирует теломерную ДНК, и тем самым влияет на рост клеток. Высокая активность теломеразы свойственна половым и стволовым клеткам. Как только стволовые клетки начинают дифференцироваться, теломеразная активность падает, а их теломеры начинают укорачиваться.

Тератома (от греч. tеratos - урод) - доброкачественная опухоль, вызванная нарушением эмбрионального развития. Как правило, состоит из мышечной, нервной и др. тканей.

Тотипотентность - способность к созданию целого организма, повторению эмбриогенеза из одной клетки.

Фибробласты (от лат. fibra - волокно и blastуs - росток) - основная клеточная форма соединительной ткани животных и человека. Фибробласты образуют волокна и основное вещество этой ткани. При травме кожи они участвуют в закрытии ран и образовании рубцов.

Эктодерма - наружный зародышевый листок многоклеточных животных. Из эктодермы образуются кожный эпителий, нервная система, органы чувств, передний и задний отделы кишечника и т. д.

Энтодерма - внутренний зародышевый листок многоклеточных животных. Из энтодермы образуются эпителий кишечника и связанные с ним железы: поджелудочная железа, печень, легкие и т. д.

Недифференцированные стволовые клетки, которые активно используются в медицине, представляют собой основу для развития клеток мозга, крови или любого другого органа. В современной фармакологии и косметологии этот биологический материал является ценным лекарством. Специалисты научились самостоятельно выращивать его для разных нужд: например, брать материал пуповинной крови, который широко применяют для восстановления и укрепления иммунной системы.

Что такое стволовые клетки

Если объяснять понятным языком, то СТ (стволовые недифференцированные клетки) представляют собой «прародителей» обычных клеток, которых насчитывается сотни тысяч видов. Обычные клетки отвечают за наше здоровье, обеспечивают исправную работу жизненно необходимых систем, заставляют наше сердце биться и работать мозг, они ответственны за пищеварение, красоту кожи и волос.

Где находятся стволовые клетки

Невзирая на внушительную цифру в 50 миллиардов штук, такой ценный материал у взрослого человека имеется в очень малых количествах. В основной массе клетки содержатся в костном мозге (мезенхимальные клетки и стромальные клетки) и подкожном жире, остальные равномерно распределены по всему телу.

По-другому сформирован эмбрион. Миллиарды стволовых клеток образуются после деления зиготы, которая является результатом слияния мужской и женской гамет. Зигота хранит в себе не только генетическую информацию, но и план последовательного развития. Однако в процессе эмбриогенеза ее единственной функцией является деление. Других задач, помимо передачи генетической памяти следующему поколению, нет. Клетки деления зиготы и являются стволовыми, точнее, эмбриональными.

Свойства

Взрослые клетки находятся в состоянии покоя, пока какая-либо из регулирующих систем не подаст сигнал об опасности. СТ активируются и по кровотоку добираются до пораженного места, где, считывая информацию с «соседок», превращаются в костные, печеночные, мышечные, нервные и другие составляющие, стимулируя внутренние резервы организма к восстановлению тканей.

Количество чудо-материала с возрастом уменьшается, притом начало сокращения приходится на совсем юный возраст – 20 лет. К 70 годам клеток остается очень мало, этот мизерный остаток поддерживает функционирование систем жизнеобеспечения организма. Помимо этого, «постаревшие» СТ частично теряют свою универсальность, они уже не могут перевоплощаться в любой тип ткани. Например, исчезает возможность превращения в нервные и кровяные составляющие.

По причине недостачи гемопоэтических составляющих, отвечающих за кровообразование, человек на старости лет покрывается морщинами и иссыхает из-за того, что кожа уже не получает достаточного питания. Эмбриональный материал самый способный в деле перевоплощения, значит, самый ценный. Такие СТ могут переродиться в любой вид ткани в организме, быстро восстановить иммунитет, стимулировать орган к регенерации.

Разновидности

Может показаться, что разновидностей стволовых клеток только две: эмбриональные и клетки, находящиеся в организме родившегося человека. Но это не так. Их классифицируют по полипотентности (способности перевоплощаться в другие виды тканей):

  • тотипотентные клетки;
  • плюрипотентные;
  • мультипотентные.

Благодаря последнему виду, как можно понять по названию, можно получить любые ткани в организме человека. Это не единственная классификация. Следующее различие будет заключаться в способе получения:

  • эмбриональные;
  • фетальные;
  • постнатальные.

Эмбриональные СТ берутся у эмбрионов, которым несколько дней. Фетальные клетки – это биологический материал, собранный из тканей эмбрионов после абортов. Их потентность по сравнению с трехдневными эмбрионами несколько ниже. Постнатальный вид – это биоматериал рожденного человека, добываемый, например, из пуповинной крови.

Выращивание стволовых клеток

Изучая свойства эмбриональных стволовых клеток, ученые пришли к выводу, что это материал, идеальный для трансплантации, так как им можно заменить любые ткани в организме человека. Эмбриональные составляющие получают из неиспользованной ткани эмбрионов, которых изначально выращивают для­ искусственного оплодотворения. Однако использование эмбрионов вызывает этические возражения, в результате ученые открыли новый тип стволовых клеток – индуцированные плюрипотентные.

Индуцированные плюрипотентные клетки (iPS) сняли этические проблемы без потери уникальных свойств, которыми обладают эмбриональные. Материалом для их выращивания служат не эмбрионы, а зрелые дифференцированные клетки пациента, которые извлекают из организма, а после проведения работ в специальной питательной среде, возвращают обратно, но уже с обновленными качествами.

Применение

Применение СТ очень широко. Определить области, где они употребляются, тяжело. Большинство ученых заявляет, что за лечением донорским биоматериалом будущее, однако дополнительные исследования следует продолжать проводить. На данный момент такие работы в большинстве своем успешные, они положительно отразились на лечении многих заболеваний. Взять, например, помощь в лечении рака, первые этапы которой уже дали надежду на выздоровление многим больным.

В медицине

Медицина не случайно возлагает огромные надежды на микротехнологии. Уже 20 лет врачи со всего мира используют мезенхимальные клетки костного мозга для лечения серьезных заболеваний, в том числе и злокачественных опухолей. Донором такого материала с набором антиген может стать близкий родственник больного, у которого подходящая группа крови. Ученые проводят и другие исследования в области лечения таких заболеваний, как цирроз печени, гепатит, патологии почек, диабет, инфаркт миокарда, артроз суставов, аутоиммунные болезни.

Лечение стволовыми клетками различных заболеваний

Спектр использования в лечении поражает. Из СТ делают многие лекарства, но особым преимуществом пользуются трансплантации. Не все пересадки заканчиваются хорошо из-за индивидуального отторжения материала, но лечение в большинстве случаев успешно. Оно используется против таких недугов:

  • острый лейкоз (острый лимфобластный, острый миелобластный, острый недифференцированный и другие виды острого лейкоза);
  • хронические лейкозы (хронический миелоидный, хронический лимфоцитарный и другие типы хронического лейкоза);
  • патологии пролиферации миелоидного ростка (острый миелофиброз, истинная полицитемия, идиопатический миелофиброз и другие);
  • фагоцитарные дисфункции;
  • наследственные нарушения метаболизма (болезнь Гарлера, болезнь Крабе, метахромная лейкодистрофия и другие);
  • наследственные расстройства работы иммунной системы (дефицит адгезии лимфоцитов, болезнь Костманна и другие);
  • лимфопролиферативные расстройства (лимфогранулематоз, неходжкинская лимфома);
  • другие наследственные расстройства.

В косметологии

Методы использования стволовых клеток нашли свое применение в сфере красоты. Косметологические фирмы все больше выпускают средств с такой биологической составляющей, которая может быть, как животной, так и человеческой. В составе косметики ее маркируют как Stem Cells. Ей приписывают чудодейственные свойства: омолаживание, отбеливание, регенерация, восстановление упругости и эластичности. Некоторые салоны даже предлагают инъекции стволовых клеток, однако введение препарата под кожу будет дорогостоящим.

Выбирая то или иное средство, не ведитесь на «удочку» красивых высказываний. Данный биоматериал не имеет никакого отношения к антиоксидантам, да и провести омоложение на десяток лет за одну неделю не получится. Учтите, что такие крема и сыворотки не будут стоить копейки, ведь получение стволовых клеток - это процесс непростой и трудоемкий. Например, японские ученые пытаются заставить улиток выделять больше слизи с содержанием заветного материала в лабораториях. Вскоре эта слизь станет основой новой косметики.

Видео: Стволовая клетка

Предмет и задачи биологии стволовой клетки. Основные свойства и классификация стволовых клеток

классификация стволовых

Происхождение термина «стволовая клетка» и история

открытия типов стволовых клеток

В общепринятом понимании термин «стволовая клетка» обозначает клетку, обладающую способностью к самовоспроизведению (самообновлению) и дающую начало дифференцированным потомкам.

Благодаря обнаружению стволовых клеток расширились возможности в области изучения механизмов, которые регулируют эмбриональное развитие, клеточную дифференцировку и сохранение целостности органов и тканей, т.е. гомеостаз. Помимо этого, учитывая уникальные свойства стволовых клеток, а именно, их способность к пролиферации, направленной

дифференцировке, разработка новых терапевтических подходов, основанных на клеточных технологиях, открывает широкие горизонты в различных областях медицины. В связи с таким повышенным интересом современных ученых и клиницистов к проблематике, связанной с изучением и практическим применением стволовых клеток, немаловажным является рассмотрение стволовых клеток в их историческом контексте.

Впервые термин «стволовая клетка» появился в научной литературе еще в 1868 г. в работе выдающегося немецкого зоолога и эволюциониста Эрнста Геккеля (1834-1919 гг.). Геккель использовал термин «Stammzelle» (oti нем. - «стволовая клетка») для описания L общего предка, некоего одноклеточного I организма, от которого, по его мнению, произошли все многоклеточные организмы. Позже, в 1877 г., перейдя от вопросов эволюции (филогенеза) к изучению проблем » эмбриологии (онтогенеза), Эрнст Геккель предложил назвать оплодотворенную яйцеклетку стволовой клеткой. Использование термина «стволовая клетка» для обозначения отдельной клетки в составе эмбриона, которая, способна давать начало множеству специализированных клеток, было введено несколько позже - в конце 19 века.

Опираясь на теорию «непрерывной зародышевой плазмы» Августа Вейсмана, предложенной в 1885 г., немецкий биолог Теодор Бовери (1862-1915), исследуя закономерности оогенеза и сперматогенеза, предложил называть «стволовыми клетками» все клетки зародышевой линии, начиная от оплодотворенной яйцеклетки и заканчивая предшественниками половых клеток.

Также в 1892 году при исследовании эмбриогенеза ракообразных семейства Cyclops Валентин Геккер идентифицировал крупную клетку, названную им «стволовой», которая подвергалась асимметричному делению, при этом одна из дочерних клеток этой стволовой предшественницы давала начало мезодерме, тогда как другая давала начало зародышевым (герминативным) клеткам. Таким образом, в этих ранних исследованиях термин «стволовая клетка» обозначает клетки, которые сейчас называют первичными половыми клетками (primordial germ cell), или зародышевыми (геримнативными) стволовыми клетками.

В 1896 г., Эдмунд Уилсон популяризировал термин «стволовая клетка» в своей книге "The Cell In Development and Inheritance" (Wilson, 1896). В свое время эта книга была очень популярна и имела огромное влияние на эмбриологов и генетиков конца 19 века, особенно в США. В связи с этим, во многих англоязычных источниках Эндмунд Уилсон упоминается, как автор термина «стволовая клетка». Тем не менее, Уилсон использовал термин «стволовая клетка» в том же значении, что Бовери и Геккер, то есть, обозначая этим термином неспециализированную материнскую клетку зародышевой линии.

Примерно в то же время велись активные исследования в области гемопоэза. Ученый мир раскололся на два лагеря. Часть ученых придерживалась дуалистической теории кроветворения, они предполагали, что клетки миелоидного и лимфоидного ряда происходят от различных предшественников, которые располагаются в различных гемопоэтических тканях, в костном мозге и лимфатических узлах/селезенке, соответственно.

Сторонники унитарной теории кроветворения предполагали существование одной единственной клетки, которая и является

родоначальницей всех клеток крови. В связи с этим, приверженцы унитарной теории кроветворения столкнулись с проблемой создания термина, который полностью бы отражал потенциал развития таких клеток.

В 1908 г. русский ученый Александр Максимов предложил называть такую материнскую гемопоэтическую клетку «стволовой клеткой».

Примерно в это же время термин «стволовая клетка» появился в работах Веры Данчакофф и Эрнста Нойманна, а также (1896) в работе Артура Паппенхайма. Все упомянутые исследователи использовали термин «стволовая клетка» для определения клеток-предшественников, способных к дифференцировке в зрелые клетки красной и белой крови. Уже ранние исследования в областях эмбриологии и гематологии выявили, что СК могут быть обнаружены в эмбрионе и в тканях взрослого организма.

В 1981 году американскому ученому Мартину Эвансу впервые удалось выделить недифференцированные плюрипотентные линии стволовых клеток из эмбриобласта (внутренней клеточной массы) бластоцисты мыши.

Первой успешной трансплантацией стволовых клеток, извлеченных из пуповинной крови, называют операцию, проведенную 5-ти летнему мальчику с анемией Фанкони в 1988 году. Без проведения операции по трансплантации стволовых клеток, изъятых из пуповинной крови, он имел нулевые шансы на выздоровление. После трансплантации он выздоровел, прошел необходимую реабилитацию и живет до сих пор.

В 1998 году Д. Томпсон и Д. Герхарт изолировали

бессмертную линию эмбриональных стволовых клеток, а в 1999 году журнал Science признал открытие эмбриональных стволовых клеток третьим по значимости событием в биологии после расшифровки двойной спирали ДНК и программы «Геном человека».

Существование гемопоэтических стволовых клеток (ГСК), являющихся родоначальниками всех кроветворных ростков, было подтверждено работами Джеймса Тилла, Эрнеста МакКаллока и других исследователей в 60-х гг. прошлого века. Дальнейшие исследования позволили обнаружить и охарактеризовать СК в других тканях взрослого организма, а также во внезародышевых тканях и органах новорожденного.

Таким образом, использование термина «стволовая клетка» началось во второй половине 19 века в контексте фундаментальных вопросов эмбриологии. Доказательства существования единой гемопоэтической стволовой клетки, достоверно полученные в 60-х годах прошлого столетия, сделали эти клетки прототипом всех стволовых клеток, а именно: клеток, способных к почти неограниченной пролиферации (самообновление) и способных давать специализированные клетки-потомки (дифференцировка).

Основные свойства и классификация стволовыхклеток

Классификация стволовых клеток по их способности к дифференциации:

1. Тотипотентные клетки способны формировать все эмбриональные и экстра-эмбриональные типы клеток. К ним относятся только оплодотворённый ооцит и бластомеры 2-8 клеточной стадии.

2. Плюрипотентные клетки способны формировать все типы клеток эмбриона. К ним относятся эмбриональные стволовые клетки, первичные половые клетки и клетки эмбриональных карцином.

3. Другие типы стволовых клеток локализуются в сформировавшихся тканях взрослого организма (adult stem cells). Они варьируют по способности к дифференцировке от мульти- до унипотентных.

Классификация стволовых клеток по источнику их выделения:

1. Эмбриональные стволовые клетки (ЭСК) - внутриклеточная масса раннего эмбриона (на этапе бластоцисты 4-7 день развития).

2. Фетальные стволовые клетки - клетки зародыша на 9 - 12 неделе развития, выделенные из абортивного материала.

3. Стволовые клетки взрослого организма:

- Гемопоэтические стволовые клетки (ГСК ) - мультипотентные стволовые клетки, дающие начало всем клеткам крови: крови -эритроцитам, В-лимфоцитам, Т-лимфоцитам, нейтрофилам, базофилам, эозинофилам, моноцитам, макрофагам и тромбоцитам Кроме костного мозга ГКС обнаружены в системном кровотоке и скелетных мышцах.

- Мезенхимные стволовые клетки мультипотентные региональные стволовые клетки, содержащиеся во всех мезенхимальных тканях (главным образом в костном мозге), способные к дифференцировке в различные типы мезенхимальных тканей, а так же в клетки других зародышевых слоев.

- Стромальные стволовые клетки - мультипотентные стволовые клетки взрослого организма, образующие строму костного мозга (поддерживающую гемопоэз), имеющие мезенхимальное происхождение.

- Тканеспецифичные стволовые клетки - располагаются в различных видах тканей и в первую очередь, отвечают за обновление их клеточной популяции, первыми активируются при повреждении. Обладают более низким потенциалом, чем стромальные клетки костного мозга.

На сегодняшний день обнаружены следующие виды тканеспецифичных стволовых клеток:

Нейрональные стволовые клетки в головном мозге - дают начало трем основным типам клеток: нервным клеткам (нейронам) и двум группам не нейрональных клеток астроцитам и олигодендроцитам.

Стволовые клетки кожи - размещенные в базальных пластах эпидермиса и возле основы волосяных фолликулов, могут давать начало кератоцитам, которые мигрируют на поверхность кожи и формируют защитный слой кожи.

Стволовые клетки скелетной мускулатуры - выделяют из поперечно полосатой мускулатуры, они способны к дифференцировке в клетки нервной, хрящевой, жировой и костной тканей, поперечнополосатой мускулатуры. Однако последние исследования показывают, что клетки скелетной мускулатуры, это не что иное, как мезенхимные стволовые клетки, локализованные в мышечной ткани.

Стволовые клетки миокарда - способны дифференцироваться в кардиомиоциты и эндотелий сосудов.

Стволовые клетки жировой ткани обнаружены в 2001 году, проведенные с тех пор дополнительные исследования показали, что эти клетки могут превращаться и в другие типы тканей, из них можно выращивать клетки нервов, мышц, костей, кровеносных сосудов, или по крайней мере, клетки, имеющие свойства вышеперечисленных.

Стромальные клетки спинного мозга (мезенхимальные стволовые клетки) дают начало разным типам клеток: костным клеткам (остеоцитам), хрящевым клеткам (хондроцитам), жировым клеткам (адипоцитам), а также другим типам клеток соединительной ткани.

Эпителиальные стволовые клетки пищеварительного тракта расположены в глубоких складках оболочек кишечника и могут давать начало разным типам клеток пищеварительного тракта.

Кроме того, в начале прошлого года американские ученые из университета в Северной Каролине сообщили, что после семилетних исследований ими разработана технология получения стволовых клеток из околоплодных вод, не нанося вреда зародышу.

Для Ск характерны следующие основные функции:

1. Возможность деления и самообновления. В отличие от мышечных клеток, клеток крови и нервных клеток, которые обычно не могут воспроизводить сами себя, стволовые клетки могут воспроизводить себя многократно -пролиферировать. Начальная популяция стволовых клеток, которая пролиферирует в течение многих месяцев, может дать миллион подобных клеток. Если эти стволовые клетки продолжают оставаться неспециализированным, говорят, что они обладают способностью длительного самообновления.

2. Стволовые клетки неспециализированны. Они не имеют специфичных структур, позволяющих выполнять специализированные функции. Например, стволовые клетки не могут перекачивать кровь по организму, как клетки миокарда сердца, не могут переносить в себе кислород как это делают эритроциты. Однако, неспециализированные стволовые клетки могут трансформироваться в специализированные клетки, включая клетки миокарда сердца, клетки крови или нервные клетки.

3. Стволовые клетки могут давать начало другим специализированным клеткам. Когда неспециализированные стволовые клетки дают начало специализированным клеткам, этот процесс называется дифференцировкой. В процессе дифференцировки клетки обычно проходят несколько этапов, при этом на каждом этапе они становятся более специализированными.

Ученые только начали понимать сигналы внутри и вне клеток, которые запускают каждый этап процесса дифференцировки. Внутренние сигналы контролируются генами клеток. Это участки ДНК, несущие какую-либо целостную информацию и контролирующие развитие определённого признака или свойства. Внешние сигналы для клеточной дифференцировки - это химические вещества, секретируемые другими клетками, физический контакт с соседними клетками и некоторые молекулы в микросреде. Взаимодействие сигналов во время процесса дифференцировки приводит к тому, что клеточная ДНК приобретает эпигенетические отметки, которые ограничивают экспрессию ДНК в клетках.

4. СК способны к асимметричному делению, в результате которого образуется две дочерних клетки, одна их которых коммитирована к дифференцировке в специализированную(ые) клетку(и), а вторая сохраняет все признаки СК, что предохраняет пул СК от полного истощения. Коммитированная к дифференцировке клетка, формирующаяся в результате ассиметричного деления СК, зачастую называют транзитной амплифицирующейся клеткой - ТАК.

ТАК не способны к самообновлению, однако обладают значительным пролиферативным потенциалом. Фактически способность к самообновлению и продукции коммитированных к дифференцировке дочерних клеток за счет асимметричного деления является определяющим свойством СК любого происхождения.

5. Механизмы поддержания генетического гомеостаза в СК функционируют более эффективно в сравнении с дифференцированными соматическими клетками.

Основные направления и перспективы использования стволовых клеток в биологии и медицине.

СК являются наиболее подходящим объектом для исследований в фундаментальной биологии и в патологии клетки, в особенности при изучении механизмов клеточной дифференцировки и специализации в процессе онтогенеза, а также путей и механизмов клеточной и тканевой регенерации. Изучение и осмысление этих процессов поможет понять причины патологии развития, генетических дефектов и многих заболеваний, включая онкологические. Для широкомасштабного проведения подобного рода экспериментальных работ в первую очередь требуются доступные источники СК.

Особо значительные успехи практического применения СК уже достигнуты в трёх областях:

1) лечении ожогов и заживлении ран;

2) терапии острого инфаркта миокарда;

3) лечении онкологических больных.

Лечение ожогов и ран - создание искусственной кожи, выращенной методами тканевой инженерии. При трансплантации такой кожи обеспечивается уменьшение общей площади раневой поверхности и, как следствие - быстрое заживление ран, существенно снижается опасность развития осложнений. Эта методика применяется с 1989 года, выполнено более 600 трансплантаций культивированных аллофибробластов больным с обширными пограничными ожогами IIIA степени и длительно незаживающими остаточными ранами.

Лечение онкологических больных -ауто- и аплотрансплантация стволовых клеток костного, позволяет восстановить его кроветворную активность, которая частично утрачивается после применения интенсивной химио- и радиотерапии. Благодаря использованию трансплантации костного мозга в Белорусском Центре гематологии и трансплантологии удалось повысить выживаемость за 3-5 лет с 50% (без трансплантации) до 70-90% .

Терапия острого инфаркта миокарда - проводится с целью восстановления тканей сердца после инфаркта миокарда (ИМ), что достигается за счёт регенерации кардиомиоцитов и образования новых капилляров. По мнению многих исследователей, наилучшим потенциалом для восстановления функции сердца после инфаркта миокарда обладают СК костного мозга: их трансплантация индуцирует мио- и ангиогенез, улучшает гемодинамику.

В клеточной терапии инфаркта миокарда основными являются такие два метода:

1. Хирургический - непосредственная доставка СК к ткани миокарда (так в одной работе, посвященной клиническим результатам этого метода лечения ИМ говориться об использовании инъекции 1500000 аутологичных СК костного мозга в периинфарктную зону).

2. Терапевтический - создание в крови высокой концентрации С К, путём стимуляции костного мозга введением специфических ростовых факторов.

Весьма перспективным, также

представляется методов клеточной терапии в следующих областях медицины:

Неврология - лечение последствий травм головного и

спинного мозга, инсульта, коматозных состояний, нейродегенеративных заболеваний, болезней Паркинсона, Альцгеймера и др.;

Эндокринология - лечение инсулинзависимого диабета;

Болезни опорно-двигательного аппарата - репарация

костей, костная пластика, лечение миопатий, последствий травм и т.д.;

Гепатология - лечение гепатитов, цирроза печени;

Гематология и офтальмология;

Стоматология - использование СК для выращивания "своих собственных" зубов;

Косметология - лечение косметических дефектов;

Геронтология - использование СК для омоложения организма (ревитализация).

Гномика вирусов и фагов. Вирусы как объектов молекулярной генетики.

Основные свойства вирусов

Вирусы - субмикроскопические ДНК- или РНК-содержащие объекты,

репродуцирующиеся только в живых клетках, заставляя их

синтезировать так называемые вирионы, которые содержат геном вируса и способны перемещать его в другие клетки.

Это определение отражает два главных качества вирусов:

Наличие у вируса собственного генетического материала, который внутри клетки-хозяина ведет себя как часть клетки;

Существование внеклеточной инфекционной фазы, представленной специализированными частицами, или вирионами, которые служат для 5 введения генома вируса в другие клетки.

Вирусы имеют ряд свойств, которые не укладываются в представления о них как о живых объектах, а именно:

Вирусы не дышат;

Не проявляют раздражимости;

Не способны самостоятельно двигаться; -

Не растут и не делятся;

Способны (по крайней мере, некоторые) в очищенном состоянии кристаллизоваться.

Согласно традиционным зоологическим и ботаническим критериям, вирусы не являются живыми организмами. В то же время все вирусы обладают главными свойствами живых организмов – способностью реплицироваться, изменяться и передавать эти изменения потомкам, т.е. эволюционировать. Другими словами, вирусы имеют собственную эволюционную историю.

Ни один из известных вирусов не имеет биохимических или генетических потенций для генерирования энергии, необходимой для осуществления своих биологических процессов. В этом отношении они абсолютно зависят от клетки-хозяина.

Размеры вирусов

Размеры вирусных частиц также существенно варьируют. Наиболее "худые" имеют диаметр около 10 нм, а их длина у самых протяженных достигает 2 мкм. Диаметр сферических вирионов колеблется от-20 до 300 нм. Самые крупные из известных вирусов - родственники вируса оспы, их вирионы могут иметь длину до 450 нм и 260 нм в ширину и толщину.

Формы существования вирусов

Для нуклеопротеидных вирусных молекул характерны две формы существования: внеклеточная, корпускулярная, покоящаяся, и внутриклеточная, репродуцирующаяся, вегетативная.

Внеклеточные вирусы представляют собой корпускулы частицы сферической, кубической, нитевидной формы, которые называют элементарными тельцами, вирусными частицами, а чаще вирионами. Размеры вирионов колеблются от 15-30 до 200-500 нм.

Строение вирусов

Все вирионы содержат геномную нуклеиновую кислоту, покрытую снаружи белковой оболочкой - капсидом. По химическому составу вирусы -нуклеопротеиды, а по структуре - нуклеокапсиды. В состав многих вирусов, кроме белка и нуклеиновой кислоты, входят" углеводы, липиды и некоторые другие соединения.

Одноцепочечные вирусные РНК разделяют на две группы. К одной группе относят РНК, которые способны в клетке-хозяине транслироваться рибосомами, т.е. играть роль мРНК. Такие РНК обозначают как (+)РНК, а геном, который они представляют, называют позитивным.

У другой группы РНК-содержащих вирусов РНК не узнается рибосомным

аппаратом клетки, и поэтому она не способна выполнять функцию мРНК. В клетке такая РНК служит матрицей для синтеза мРНК. Данный тип РНК обозначают как (-)РНК, а соответствующий геном носит название негативного.

Капсид состоит из одинаковых по строению субъединиц - капсомеров, которые располагаются согласно двум основным типам симметрии -кубической (икосаэдрической) или спиральной.

Капсомеры - это морфологические единицы капсида, которые, в свою очередь, могут состоять из одной или нескольких молекул белка -структурных единиц. Комплекс капсида и вирусной нуклеиновой кислоты обычно обозначают термином нуклеокапсид. Он может обладать кубической (икосаэдрической) или спиральной симметрией. Вирионы простых вирусов представлены только капсидом. Вирионы сложных вирусов дополнительно имеют двухслойные липидные мембраны, в которые включены белки (почти всегда - гликопротеиды), имеющие форму шипов. Такие вирионы обычно имеют слой негликозилированного белка (матрикс), примыкающего к капсиду.

Простые вирусы, как правило, состоят только из вирусоспецифических компонентов. Изредка такие вирусы могут «уносить» из клетки-хозяина ее компоненты, такие, например, как полиамины и гистоны - поликатионы, служащие для нейтрализации зарядов на вирусной нуклеиновой кислоте, что облегчает упаковку ее в капсид.

Сложные вирусы содержат ферменты, а также могут включать в состав вириона белки - компоненты мембраны клетки-хозяина.

Закономерен вопрос: почему у всех вирусов капсид имеет субъединичную структуру? Такое строение капсида, по-видимому, обусловлено необходимостью экономии генетического материала. В противном случае, как показывают расчеты, у многих вирусов его бы хватило для кодирования белков, способных покрыть не более 15% нуклеиновой кислоты. Очевидно также, что при наличии одного или немногих морфологических компонентов

значительно облегчается самосборка капсида. Иначе вероятность ошибок в процессе самосборки резко бы возросла.

Существуют своего рода «технические» ограничения, которые снижают прочность упаковки на основе, скажем, тетраэдра или октаэдра. В этих вариантах промежутки между субъединицами будут слишком большими, а частица в результате - непрочной. Расчеты и опыт свидетельствуют, что чем больше число субъединиц и чем больше контактов их друг с другом, тем более стабильной получается структура и тем крупнее может быть капсид, в который, в свою очередь, может быть помещен более крупный и сложный геном.

Инкапсулирование генома необходимо вирусам, прежде всего, для физической защиты лабильной по своей химической природе нуклеиновой кислоты от воздействия на внеклеточной стадии существования жестких факторов окружающей среды (таких, как экстремальные значения рН и температуры, УФ-облучение и т.д.).

Другой важнейшей функцией капсида является обеспечение адсорбции вируса на клетке-хозяине через взаимодействие с клеточными рецепторами.

У некоторых вирусов геном фрагментирован, и оболочка просто необходима для того, чтобы собрать его в единое целое.

У сложных вирусов наличие внешней липидной оболочки из-за сродства ее с мембраной клетки-хозяина способствует проникновению нуклеокапсида внутрь клетки. Кроме того, за счет включения в эту оболочку белков клетки-хозяина, вирус получаем возможность успешнее преодолевать хозяйский

иммунологический барьер.

Типы взаимодействия вируса с клеткой

При проникновении вируса в клетку образуется новый биологический комплекс «вирус-клетка». Этот комплекс содержит генетический аппарат клетки и генетический аппарат вируса, функции которых могут генетический

функции которых могут переплетаться самым причудливым образом. По сути дела - это «химера», гибрид двух организмов.

Несмотря на огромное разнообразие клеток и вирусов, можно выделить несколько основных типов их взаимодействия.

1. Клетка гибнет и при этом образуется новое поколение вирусных частиц. Такой тип взаимодействия вируса и клетки называется продуктивным или литическим. Вирусы, вызывающие лизис клеток-хозяев, носят название вирулентных. Так протекает большинство вирусных инфекций независимо от того, являются ли вирусы крупными и сложно устроенными ли мелкими.

2. Инфекционный процесс носит абортивный характер - клетка выживает, вирус не образуется. Иногда погибают оба партнера - и вирус, и клетка.

3. Возникает интеграция двух геномов, которые сосуществуют более или менее мирно на протяжении многих поколений. Такой тип взаимодействия называется вирогенией. Вирусы, способные вызывать вирогению, называются умеренными. В случае бактериофагов, такое встраивание генома вируса в ДНК клетки-хозяина носит наименование лизогении, а сами фаги, способные к такому взаимодействию с клеткой, именуются лизогенными.

Кроме лизогенных фагов интегративный процесс характерен для ретровирусов, многих ДНК-содержащих онкогенных вирусов (у них может происходить интеграция не только всего генома, но и его части), а также некоторых других вирусов. Интегративный процесс часто приводит к трансформации клетки - приобретению ею новых гено- и фенотипических признаков.

В зависимости от степени антагонизма двух геномов - вирусного и клеточного - возможны несколько типов инфекции. Феноменологически различают персистентные инфекции, при которых вирус выделяется из организма-хозяина в течение значительно большего времени, чем при обычных литических инфекциях, завершающихся гибелью клеток хозяев. При латентной инфекции вирус находится в организме хозяина в скрытой форме и выделяется в периоды рецидивов болезни. Медленные вирусные инфекции характеризуются очень длительным инкубационным периодом, который может длиться годами.

Академик Российской академии медицинских наук, член-корреспондент РАН В. СМИРНОВ, директор Института экспериментальной кардиологии Кардиокомплекса Минздрава РФ.

В последние годы возникло новое направление в медицине, сулящее людям излечение от многих тяжелых болезней. Это - изучение так называемых стволовых стромальных клеток, находящихся в костном мозге. Они обеспечивают восстановление поврежденных участков органов и тканей. Стромальные клетки, получив от центральной нервной системы сигнал о какой-либо "неполадке", по кровяному руслу устремляются к пораженному органу. Они залечивают любую рану, превращаясь на месте повреждения в необходимые организму клетки: костные, гладкомышечные, печеночные, сердечной мышцы или даже нервные. Но запас стромальных клеток не безграничен. Поэтому случается так, что обновить утраченные клетки организм самостоятельно уже не в состоянии: или очаг поражения слишком велик, или организм ослаблен, или возраст уже не тот… Можно ли помочь больному излечиться полностью от цирроза, инсульта, паралича…? Уже сегодня ученые умеют направлять стромальные клетки "по нужному пути". Достижения в этой области клеточной биологии делают возможности терапевтического использования стромальных стволовых клеток практически безграничными.

Состав стволовых клеток - предшественников всех клеток организма.

Российский ученый Александр Яковлевич Фриденштейн (1924-1998), положивший начало учению о стромальных стволовых клетках костного мозга.

Стромальные стволовые клетки костного мозга способны превращаться во многие другие клетки организма.

У мышей вызывали инфаркт, а затем через 1-5 часов делали две инъекции стромальных клеток в инфарктную зону.

Наращивание кости после удаления остеосаркомы при помощи пластинки, на которую нанесен специальный белок (bone morphogenic protein), превращающий циркулирующие в крови стромальные клетки в клетки костной ткани.

Стволовые клетки - предшественники клеток организма

Я хочу рассказать о разделе медицины, где незаметно для большинства ученых и врачей в ближайшее время ожидается феноменальный, грандиозный рывок в лечении множества болезней, сегодня практически неизлечимых.

Стволовые клетки - предшественники всех клеток организма. В разных условиях они способны превращаться в другие клетки. Большая часть стволовых клеток взрослого организма находится в костном мозге. Как известно, костный мозг, прежде всего, - плацдарм кроветворения. Он состоит из двух видов стволовых клеток: тех, из которых получается все известное многообразие клеток крови (так называемые гемопоэтические стволовые клетки), и стромальных стволовых клеток, о которых и пойдет речь. Помимо костного мозга небольшое количество стволовых клеток (так называемые стволовые тканевые клетки) имеется непосредственно в тканях: мышечной (мио-бласты), костной (остеобласты) и других.

В кроветворной системе стволовых клеток много, они просты по структуре, хорошо изучены, постоянно обновляются, и пути их превращений в клетки крови давно известны.

А вот о стволовых стромальных клетках костного мозга читатели вряд ли слышали. По сравнению с гемопоэтическими их в костном мозге совсем немного, и они представляют собой более сложные долгоживущие системы, которые обновляются достаточно редко. Пути превращения стромальных клеток только начинают изучать. Как показали последние исследования, стромальные клетки, так же как и предшественники клеток крови, постоянно циркулируют в кровотоке млекопитающих.

Основу науки о стромальных клетках около 30 лет назад заложили советские ученые Александр Яковлевич Фриденштейн (безвременно скончавшийся в 1998 году), работавший в НИИ эпидемиологии и микробиологии имени почетного академика Н. Ф. Гамалеи РАМН, и Иосиф Львович Чертков, и поныне работающий в Гематологическом центре РАМН. Сейчас многие исследователи замалчивают имена основоположников, но находятся порядочные люди у нас и на Западе, которые безоговорочно признают приоритет этих ученых в открытии стромальных клеток. В 1999 году стромальные клетки "открыли" заново американские ученые, после чего количество работ в этой области клеточной биологии начало нарастать лавинообразно. И неудивительно - ведь стромальные клетки могут оказаться чрезвычайно полезными для клинической медицины.

Стволовые клетки участвуют в восстановлении поврежденных тканей

Каким образом здоровый организм взрослого человека восстанавливает органы и ткани в случае их повреждения? Неужели эволюция не позаботилась о выходе из экстремальных ситуаций? Организм должен осуществлять и, конечно же, осуществляет регенерацию поврежденных тканей. И делает он это с помощью клеток, из которых можно получить любые другие клетки, - стволовых клеток.

Установлено, что в регенерации участвуют два вида стволовых клеток - специализированные тканевые и универсальные стромальные клетки костного мозга.

Неспроста мудрая природа наряду с "локальными депо" (тканевыми стволовыми клетками) создала и "центральный склад запчастей" (стромальные клетки костного мозга). Если тканевые стволовые клетки используются для восстановления поврежденных участков только в данном месте и для определенного вида ткани (костные - для костей, мышечные - для мышц и т. д.), то "запчасти центрального склада" - стромальные стволовые клетки костного мозга - универсальны. Они поступают с кровотоком в поврежденный орган или ткань и на месте под влиянием различных сигнальных веществ превращаются в нужные специализированные клетки, которые замещают погибшие.

Из стромальных клеток костного мозга можно вырастить любые клетки

Еще в 60-е годы Фриденштейн и его коллеги в экспериментах на животных клетках показали, что стромальные клетки способны превращаться в хрящевые (хондроциты), в жировые (адипоциты) и костные (остеобласты) клетки. Причем способность к таким превращениям у них сохраняется и при выращивании колонии из одной единственной стромальной клетки. То есть принципиально возможно вырастить большое количество стромальных клеток, а затем с помощью специальных сигнальных веществ направить их "по нужному пути" - для восстановления поврежденных тканей.

В случае тяжелых повреждений организму своих собственных стромальных клеток не хватает. Ему можно помочь, вводя стромальные клетки извне. Итальянские ученые поставили простой опыт: методом облучения мышам полностью удалили костный мозг, затем ввели специально помеченные стромальные клетки. Через несколько дней животным дали препарат, от которого у них начали разрушаться мышцы передних ног. Через две недели после инъекции стромальных клеток мышечная ткань передних лапок у мышей частично восстановилась. Оказалось, что большая часть новых мышечных клеток образовалась из введенных стромальных. Видимо, стромальные клетки подходят к месту повреждения, где получают "химический сигнал" о том, в какие клетки им нужно превратиться, чтобы компенсировать потери организма. Более того, ученые сумели "заставить" стромальные клетки под действием специальных сигнальных веществ превращаться в клетки гладких мышц прямо "в пробирке".

Оказалось, что введение стромальных клеток костного мозга в зону повреждения сердечной мышцы (зону инфаркта) практически полностью устраняет явления послеинфарктной сердечной недостаточности у эксперимен тальных животных. Так, стромальные клетки, введенные свиньям-"инфарктникам", уже через восемь недель полностью перерождаются в клетки сердечной мышцы, восстанавливая ее функции практически полностью.

Результаты такого лечения инфаркта у животных просто поразительны. По данным American Heart Association (Американского кардиологического общества) за 2000 год, у крыс с искусственно вызванным инфарктом 90% стромальных клеток костного мозга, введенных в область сердца, полностью перерождаются в клетки сердечной мышцы.

Японские ученые получили из стромальных клеток костного мозга мышей клетки сердечной мышцы прямо в лаборатории: в культуру стромальных клеток добавили специальное вещество (5-азоцитидин), и они, как по мановению волшебной палочки, начали превращаться в клетки сердечной мышцы.

Такая клеточная терапия для восстановления повреждений сердечной мышцы после инфаркта весьма перспективна, потому что для нее используются собственные стволовые стромальные клетки организма. А они не отторгаются, кроме того, при введении взрослых стволовых клеток исключена вероятность их злокачественного перерождения.

И уж совсем невероятная метаморфоза - стромальные клетки могут настолько "забыть" о своем костномозговом происхождении, что под влиянием определенных факторов превращаются даже в нервные клетки (нейроны). Через две недели после добавления специального сигнального вещества в культуру стромальных клеток они уже на 80% состоят из нейронов! Это пока лишь "пробирочное" достижение, но оно вселяет надежду на излечение больных с тяжелыми поражениями спинного и головного мозга. Тем более, что (как показали многие исследователи) при введении собственных стромальных клеток костного мозга в спинномозговой канал человека они равномерно распределяются по всем отделам головного мозга, не нарушая его структуры.

Чрезвычайно важный эксперимент провели американские исследователи. У мышей искусственным образом вызывали инсульт, после чего вводили им собственные стромальные клетки в спинномозговой канал. В 100% случаев у мышей происходило частичное восстановление двигательной активности конечностей. Результат многообещающий, поэтому неудивительно, что система Национальных Институтов Здоровья США выделила на разработку проблемы превращения стромальных клеток в нейроны огромные средства. Инсульт - болезнь распространенная и пока неизлечимая.

Стромальные клетки превращаются и в печеночные. Установлено, что при повреждении печени новые печеночные клетки (гепатоциты) и их предшественники формируются в основном из донорских стромальных клеток костного мозга.

Наши собственные исследования, проведенные в Институте экспериментальной кардиологии в группе Эммы Львовны Соболевой, показали, что такое распространенное заболевание, как атеро-склероз, приводит к увеличению потока стромальных клеток костного мозга в кровяное русло, а оттуда - в зоны уплотнений (липопротеиновых бляшек) на стенках сосудов. Очевидно, именно поэтому у больных атеросклерозом (как показали работы, проведенные совместно с группой профессора Р. С. Акчурина) костный мозг обеднен стромальными клетками. Возможно, организм "посылает" стромальные клетки для восстановления повреждений сосудов. А они "залечивают" повреждения, превращаясь в клетки костной или хрящевой ткани. Тогда наблюдаемое при атеросклерозе окостенение сосудов - нормальная реакция стромальных клеток на неполадки в сосудистой системе. Так это или нет - покажут дальнейшие исследования.

Стромальные клетки в клинической практике - это уже реальность

В терапевтическом применении стромальных клеток сегодня, без сомнения, лидирует ортопедия. Дело в том, что в руках у медиков имеются уникальные вещества: особые белки, так называемые bone morphogenic proteins (BMP), вызывающие перерождение стромальных клеток в клетки костной ткани (остеобласты). На выделение и изучение свойств BMP у исследователей ушло почти четверть века. Результаты клинических испытаний впечатляют. В США 91-летней пациентке с незаживающим в течение 13 лет переломом вживили специальную коллагеновую пластинку с нанесенными на нее BMP. При этом поступающие в зону перелома стромальные клетки "притягивались" к пластинке и под действием BMP начинали превращаться в клетки костной ткани. Через восемь месяцев после установки пластинки сломанная кость у больной практически восстановилась.

В США уже проходят последнюю стадию испытаний и скоро начнут широко применяться в клиниках специальные пористые губки, наполненные одновременно и стромальными клетками, и BMP. Помещая такие чудо-губки в поврежденное место (зону перелома или пустоту после удаления остеосаркомы), можно уже в течение двух месяцев заполнить недостающий промежуток до 25 сантиметров длиной.

Более того, сейчас ведется работа по встраиванию гена BMP в стромальные клетки. Это означает, что, переродившись в костные клетки, они смогут сами по себе вырабатывать белок - ВМР, инициирующий процесс превращения стромальных клеток в костные.

Интересный эксперимент с использованием тканевых стволовых клеток провели американские исследователи. Они вырастили стволовые клетки мышечной ткани (миобласты) из бедренных мышц 72-летнего пациента-инфарктника. Затем эти клетки ввели ему непосредственно в зону инфаркта, после чего у больного было отмечено значительное улучшение сократительной способности сердца.

Источники стромальных клеток для восстановительной терапии

Итак, в здоровом организме реально существует универсальный механизм залечивания повреждений с использованием внутреннего клеточного резерва - стромальных клеток костного мозга. Эти клетки могут превратиться в какие угодно другие клетки, попав в соответствующий отдел организма. Стромальные клетки начинают поступать в поврежденный участок, когда получают соответствующий сигнал из центральной нервной системы. Достигнув места повреждения, они под действием определенных сигнальных молекул превращаются в недостающие клетки поврежденной ткани. Но хранилище стромальных клеток не может быть неисчерпае мым. После залечивания обширных повреждений костный мозг "пустеет", да и с возрастом запас стромальных клеток значительно уменьшается.

Как же осуществлять восстановление поврежденных клеток на практике? Откуда взять препарат собственных стволовых стромальных клеток костного мозга? Ведь когда с человеком уже что-то случилось - например, сломал ногу или пережил инфаркт, - уже поздно отбирать костный мозг и выращивать из него культуру стромальных клеток для последующего введения в пораженный участок. А убедить человека сдать образец костного мозга для того, чтобы получить из него культуру стромальных клеток на "всякий случай", довольно трудно. Лимитирующий фактор в лечении стромальными клетками - время. Когда случился инфаркт, свои или совместимые с организмом клетки нужны немедленно и в большом количестве.

Сегодня за 75 долларов американские студенты сдают 20 миллилитров спинного мозга из поясничного отдела. Но полученные таким образом клетки используются только для научных исследований.

Нужно ли создавать индивидуальные или донорские банки стромальных клеток для восстановительной медицины будущего? Без сомнения. В принципе, доноров найти нетрудно. Есть еще другая проблема. Когда мы рождаемся, у нас в костном мозге на 10 тысяч стволовых кроветворных клеток приходится одна стромальная клетка. У подростков стромальных клеток уже в 10 раз меньше. К 50-ти годам на полмиллиона стволовых - одна стромальная клетка, а в 70 лет отбирать пробу костного мозга просто бессмысленно - там всего лишь одна стромальная клетка на миллион стволовых. То есть сдавать костный мозг имеет смысл только в молодом возрасте, старикам придется использовать чужие культуры стромальных клеток. Причем донорские стромальные клетки удобнее всего получать прямо при рождении из пуповины и плаценты, где они тоже содержатся в достаточном количестве.

Совсем недавно были опубликованы поразительные данные: стромальные клетки можно получать из клеток жировой ткани (адипоцитов). Адипоциты, как оказалось, совсем недалеко ушли от своих предшественников, и с помощью специальных веществ их относительно легко можно "вернуть обратно". А уж получить жировые клетки - совсем не проблема. Липосакция (удаление жира) теперь достаточно широко распространена во всех цивилизованных странах.

Можно ожидать, что промышленными источниками стромальных клеток в скором будущем станут пуповины, плаценты и жировая ткань.

Стромальные клетки - основа восстановительной терапии будущего

Газеты и журналы (правда, большей частью зарубежные) переполнены информацией о стволовых клетках. Но не о стромальных, а об эмбриональных. Это клетки человеческого зародыша, обладающие способностью образовывать более двухсот с лишним типов тканей.

Однако исследования в области эмбриональных стволовых клеток во многих странах сейчас "заморожены". Одна из причин в том, что введение эмбриональных клеток пациенту, к сожалению, иногда заканчивается возникновением злокачественной опухоли. Другая причина - этическая. Основной источник эмбриональных клеток - медицинские аборты. Католическая церковь, религиозные общины, различные общественные организации - все, кто борется за запрещение абортов, оказывают колоссальное давление на правительства и президентов, призывая вместе с абортами запретить и лечение с применением эмбриональных стволовых клеток. Этические проблемы сослужили плохую службу изучению эмбриональных клеток, но вместе с тем привлекли новые научные силы к исследованиям в области стволовых клеток взрослого организма.

В отличие от эмбриональных стромальные стволовые клетки - проверенный природой собственный восстановительный резерв организма. Риск иммунного отторжения собственных стромальных клеток отсутствует, да и возможность их злокачественного перерождения минимальна. Применение стромальных клеток безупречно и с морально-этической точки зрения. Вот почему стромальные клетки должны стать основой восстановитель ной медицины будущего столетия.

В наши дни получила широкое распространение методика пересадки стволовых клеток с целью лечения серьезных патологий. В частности, незрелые гемопоэтические клетки используются для восстановления кроветворной функции у пациентов с лейкозом и лимфомами. Первая успешная трансплантация была осуществлена еще в 1988 году. Ребенку, страдающему анемией, были введены клетки, взятые из пуповинной крови, и это позволило добиться полного исцеления.

Стволовые клетки – это незрелые клетки, которые обладают способностью к самообновлению, а также дифференциации. Суть самообновления заключается в том, что после митотического деления данные клетки сохраняют свой фенотип, т. е. дифференцировки не происходит. Дифференциация - это трансформация в специфические клетки самых разных тканей и органов.

Стволовые клетки характеризуются удивительной способностью к асимметричному делению, после которого одна из новых клеток остается стволовой, а другая становится дифференцированной.

Обратите внимание: развитие организма начинается с одной стволовой клетки – зиготы. В ходе многократного деления и дифференциации формируются все остальные типы клеток, характерные для конкретного биологического вида. В частности, у человека и приматов насчитывается более 220 типов клеток.

Стволовые клетки являются универсальным «строительным материалом» для тканей организма. Они содержат всю генетическую информацию. Благодаря незрелым клеточным элементам в организме осуществляются процессы регенерации. По мере старения количество недифференцированных клеток неуклонно снижается. Если у плода (эмбриона) имеется 1 стволовая клетка на каждые 10 тысяч дифференцированных, то к 60 годам соотношение многократно меняется, падая до 1 к 8 миллионам. Именно по этой причине поврежденные ткани значительно медленнее регенерируют у пожилых пациентов.

Обратите внимание: для сохранения такого уникального биологического материала, как кровь из пуповины, в ряде государств созданы специальные банки. Результаты многолетних исследований позволяют предполагать, что уже в скором времени универсальные незрелые клетки помогут справиться с тяжелейшими патологиями, которые сейчас не лечатся ни медикаментозно, ни хирургически.

Важно: лучшим источником для получения стволовых клеток служит кровь, полученная из пуповины сразу после появления ребенка на свет. Данные клетки также присутствуют в плаценте и эмбриональных тканях. У взрослого человека такие клеточные элементы есть в костном мозге.

К настоящему моменту времени исследователям удалось выделить следующие виды стволовых клеток:

  • гемопоэтические;
  • эндотелиальные;
  • нервные;
  • стволовые клетки миокарда;
  • кожные;
  • мезенхимные;
  • мышечные;
  • клетки кишечника;
  • эмбриональные.

Очень большое количество незрелых клеток можно получить из крови, взятой из пупочной вены. Уникальный биоматериал сохраняется в специальном банке при температуре -196 °C (в жидком азоте). Он может быть использован при необходимости восстановления практически всех вдов тканей человеческого организма. Банки заключают с родственниками родившегося ребенка договор о хранении биодепозита в течение 18-20 лет. Все это время материал сохраняет полную активность.

Обратите внимание: в плаценте недифференцированных клеток на порядок больше, чем в пуповинной крови. Однако для хранения биологического материала такого рода требуются особые условия, что связано с огромными материальными затратами.

Гемопоэтические клетки из пуповинной крови, имеют следующие преимущества:

  • материал получают легко и совершенно безболезненно;
  • биоматериал инфекционно безопасен;
  • трансплантация возможна в любое время;
  • клетки подходят для пересадки близким родственникам (идеальная биологическая совместимость);
  • возможна трансплантация другим пациентам (при условии отсутствия конфликта по антигенам).

Важно: применение данного биологического материала, равно как и его утилизация не приводят к возникновению проблем этического и юридического характера.

Источником стволовых клеток у взрослого человека служит красный костный мозг. Стромальные элементы получают посредством пункции. В специальной лаборатории из них выращивают целые колонии, которые затем трансплантируют пациенту. Попав в организм, они мигрируют в зону поражения, где заменяют погибшие высокодифференцированные элементы.

Важно: стволовые клетки у взрослых характеризуются относительно низкой функциональной активностью, если сравнивать их с эмбриональным материалом. К тому же, стромальные клетки можно трансплантировать только самому человеку, из костного мозга которого они получены; в противном случае практически неизбежно развивается реакция отторжения.

НСК обнаружены в отдельных участках головного мозга еще созревающего или уже окончательно сформировавшегося организма. Они характеризуются высокой способностью к трансформации в другие клетки и могут культивироваться в лабораторных условиях. Однако для лечения они в настоящий момент времени не используются. Для их получения необходимо разрушение мозга, поэтому об аутотрансплантации речь идти не может. В настоящее время изучается возможность использования тканей реципиента, но это может быть связано с этическими проблемами.

Уникальные стволовые клетки, которые обладают способностью к трансформации в кардиомиоциты, были обнаружены в конце прошлого столетия. Лечение человека с их помощью пока невозможно, поскольку для получения материала требуется разрушение миокарда, а возможность использования клеток реципиента только изучается.

Клетки кожи

Данную разновидность стволовых клеток получают из кожи эмбриона или уже взрослого человека. Такой биологический материал уже успешно применяется в специализированных центрах для лечения больных с обширными ожоговыми поражениями.

Мезенхимные стволовые клетки берут из костномозговой стромы. Они также обнаружены в крови, полученной из пуповины. Лечение посредством трансплантации МСК считается очень перспективным. Материал может быть получен от самого пациента; культивирование осуществляется в лабораторных условиях на питательных средах. После пересадки эти клетки превращаются в элементы различных тканей и органов. При необходимости материал замораживают и хранят в течение продолжительного времени. Несомненным достоинством лечения с помощью мезенхимных клеток является отсутствие осложнений в виде развития злокачественных новообразований. Минусом данной методики можно считать только необходимость строгого инфекционного контроля.

Источником материала являются ткани поперечнополосатой мускулатуры. Данные элементы обладают способностью к превращению в нервные, и жировые клетки, а также в хондроциты и миоциты. Установлено, что они представляют собой отдельную популяциею мезенхимных клеток, следовательно могут быть получены из пуповинной крови или собственного костного мозга пациента.

Клетки из абортивного материала

Так называемые фетальные клетки выделяют из абортивного материала при искусственном прерывании беременности на сроке от 9 до 12 недель. Использование этого источника связано со множеством технических проблем, не говоря уже об этической стороне вопроса.

Основные недостатки методики лечения эмбриональными стволовыми клетками:

  • высокий риск отторжения при пересадке материала;
  • наличие риска и заражения другими заболеваниями инфекционного генеза;
  • юридические проблемы.

Источником ЭСК является материал зародыша, взятый на первой неделе внутриутробного развития.

Достоинства эмбриональных стволовых клеток:

  • способность к трансформации в самые разнообразные клетки;
  • минимальная вероятность отторжения культур.

К числу недостатков относятся:

  • наличие риска появления доброкачественных новообразований;
  • этические проблемы;
  • юридические препятствия.

Важно: в РФ применение ЭСК сейчас запрещено приказом Минздрава РФ. Использование данного биологического материала расценивается противниками методики как посягательство на жизнь еще не рожденного ребенка.

К настоящему времени в разных странах уже осуществлены десятки тысяч удачных пересадок пациентам различных возрастов.
Трансплантация культур стволовых клеток признана весьма эффективной методикой лечения последствий травм голвного и спинного мозга, обширных ожогов, инсультов и инфарктов. Клеточная терапия позволяет вылечить ребенка, страдающего серьезной патологией крови.

Обратите внимание: сейчас 75% больных, остро нуждающихся трансплантации органов, погибают, не дождавшись своей очереди на пересадку. Ученые полагают, что клеточная терапия уже в недалеком будущем даст им шанс на излечение.

Пересадка стволовых клеток эффективна при лечении следующих патологий:

  • иммунодефицитные состояния;
  • резистентный ювенильный артрит;
  • лейкемия;
  • неходжкинская лимфома;
  • анемия Фанкони;
  • талассемия;
  • идиопатическая апластическая анемия;
  • амегакариоцитарная тромбоцитопения;
  • коллагенозы;
  • миелодиспластический синдром;
  • нейробластома.

Введение стволовых клеток способствует восстановлению и улучшению состояния кожных покровов.

Важно: пациентам, которые хотят пройти курс омолаживающих процедур с применением стволовых клеток, рекомендуется пользоваться только услугами хорошо зарекомендовавших себя косметологических центров. На рынке появилось огромное количество поддельных препаратов, которые могут нанести непоправимый вред здоровью. Уже известны случаи гибели пациентов вследствие развившихся после процедур онкологических заболеваний.

Косметические проблемы, которые можно устранить посредством клеточной терапии:

  • рубцы на коже;
  • морщины;
  • следы от химических ожогов;
  • последствия лазеротерапии.

Обратите внимание: мезотерапия с введением препаратов, содержащих культуры стволовых клеток дает возможность значительно улучшить тонус кожных покровов и способствует росту здоровых волос и ногтей.

На курс лечения требуется введение 100 миллионов недифференцированных клеток. Стоимость курсовой терапии составляет около 300 тысяч рублей, что обусловлено техническими сложностями при культивировании материала для трансплантации.

Сеанс мезотерапии в косметологическом центре обходится гораздо дешевле (в среднем - порядка 20 тыс. рублей), но для достижения заметного и стойкого эффекта требуется от 5 до 10 процедур, поэтому их общая стоимость вполне сопоставима со стоимостью лечения серьезного заболевания.