Что такое CRISPR — технология, которая изменит мир. Редактирование генов человека: начало

2017 год еще раз продемонстрировал огромные возможности генетического редактирования в медицине. Например, оно может изменить трансплантологию. Рост квалификации хирургов и новые технологии позволяют проводить фантастические операции, но все эти чудеса остаются маловостребованными из-за крайне низкого числа донорских органов. Так, в Великобритании пересадка сердца ежегодно требуется 15 000 пациентам, но получить ее могут только 150. Решением может стать использование органов , чей таким образом, чтобы не вызывать негативных последствий для рецепиента. Не менее острая проблема - распространение устойчивых к антибиотикам бактерий - также может быть решена с помощью CRISPR. Сразу несколько команд исследователей работают над тем, чтобы уничтожать подобные «супермикробы» с помощью .

Генное редактирование впервые полностью излечило от ВИЧ

Сообщения о том, что с помощью CRISPR исцелили то или иное заболевание, становятся привычными. Так, ученым удалось вылечить и - правда, пока только у мышей. Скептики часто с сомнением реагируют на результаты, продемонстрированные на грызунах, но и для них есть потрясающие новости - например, о том, как мальчику, страдающему от редкого заболевания, пересадили квадратный метр . Новая кожа, заменившая 80% старой, пораженной болезнью, была выращена из 3 кв. см, которые подвергли воздействию модифицированного вируса. Возможно, уже в этом году мы увидим компании, которые поставят генную терапию на поток и начнут лечить с ее помощью серповидно-клеточную анемию, талассемию и другие . И, конечно, CRISPR продолжат использовать для борьбы с раком - например, модифицируя человека так, чтобы они эффективнее находили и уничтожали злокачественные опухоли.

Ученые наконец осуществили с помощью генного редактирования то, что еще недавно считалось фантастикой - изменили геном непосредственно в . Метод использовали для лечения болезни Хантера - редкого генетического заболевания, связанного с нехваткой важного фермента в печени. В организм 44-летнего мужчины ввели миллиарды копий корректирующих генов и инструментов, необходимых для их внедрения; в данном случае это была не CRISPR, а метод цинкового пальца. Исследователи рисковали, но у пациента, перенесшего 26 операций, не было выбора. В случае успеха ученые проведут аналогичную терапию для больных гемофилией и фенилкетонурией. Также в прошлом году с помощью CRISPR был впервые генетически модифицирован жизнеспособный человеческий эмбрион - вначале в , а затем в . В обоих случаях зародыш избавили от нескольких мутаций, отвечающих за наследственные заболевания, но развиваться ему не позволили из этических соображений. Впрочем, реальность американской работы научные оппоненты.

CRISPR как оружие

Генетическое редактирование может стать и настоящим оружием. О применении его против людей речи, к счастью, пока не идет - имеются в виду животные-вредители, например, комары. Сами по себе эти насекомые в подавляющем большинстве безвредные, но они способны переносить различные заболевания - от желтой лихорадки до малярии. Эти болезни наносят многомиллиардный ущерб мировой экономике и убивают сотни тысяч людей в год. Специалисты предлагают отредактировать геном комаров так, чтобы они больше не могли переносить возбудителей заболеваний. Другой вариант - истребить их полностью или существенно сократить популяцию, выпуская бесплодных самцов. Такой подход разделяет компания DARPA, вложившая в исследования «боевой» CRISPR . Экологи с беспокойством следят за подобными инициативами: уничтожение целого вида может разрушить экосистемы, а наличие технологии, способной истреблять популяции, в руках правительства или бизнеса, представляет серьезную угрозу для окружающей среды.

Билл Гейтс: «Генная терапия рака искоренит инфекционные заболевания»

С куда большим сочувствием эксперты смотрят в сторону Новой Зеландии, где с помощью CRISPR планируется . Когда-то в этой стране не было млекопитающих кроме ластоногих и летучих мышей, но человек завез сюда крыс, кошек, горностаев и поссумов. Млекопитающие быстро превратились во вредителей, уничтожающих местную фауну - в первую очередь птиц, миллионы лет живших в мире без хищников. Многие виды уже вымерли, и чтобы сохранить оставшееся биоразнообразие, правительство Новой Зеландии готово на жесткие меры. По плану, к 2050 году на островах не должно остаться завезенных животных. Традиционно в борьбе с ними использовали яд и ловушки, но создание генетической системы, самостоятельно распространяющейся по популяции и сокращающей успех размножения, куда эффективнее и безопаснее для аборигенных видов. В настоящее время новозеландские ученые изучают, не нанесет ли генетическая война больше вреда, чем пользы.

Компания Monsanto давно превратилась в глазах общественности в синоним «корпорации зла» из голливудских фильмов и пугает многих не меньше, чем гипотетическое «генетическое оружие». Однако цели, которые она озвучивает, кажутся благими: так, биотехнологический гигант планирует использовать CRISPR, чтобы вывести , более урожайные и устойчивые к экстремальным условиями среды. Возможно, именно эта технология поможет нагревающейся Земли. Сельское хозяйство будущего будет использовать и генную модификацию животных - например, в Китае уже создали , заменив часть их генов генами мышей.

Соперники и наследники CRISPR

При все своих достоинствах, CRISPR - несовершенная технология. При разрезании ДНК и внедрении в геном нужного гена не исключены ошибки: например, можно случайно задеть соседний ген или вызвать мутацию. Этих недостатков лишена , которую предложили специалисты из Медицинского института Говарда Хьюза. Вместо того, чтобы вставлять и вырезать целые куски ДНК, они заменяют отдельные нуклеотиды в ней, переписывая «буквы», которыми записан геном. CRISPR часто сравнивают с ножницами - в таком случае новую технологию можно назвать «карандашом». Она идеальна для исправления единичных вредных мутаций.

Другая альтернатива - эукариотическое многократное генное редактирование (eMAGE) - также позволит внедрять новые гены, . А исследователи из стартапа утверждают, что научились заменять поврежденные участки генома на отредактированные, используя естественные механизмы клеточного деления. По их словам, им удалось с помощью особых вирусов сделать этот процесс управляемым. Правда, нам следует дождаться строгой научной проверки заявленных результатов. Во многих случаях вместо генной модификации эффективнее использовать так называемое . В таком случае цепочка РНК, фермент и активатор транскрипции располагаются у нужного гена и запускают его работу. Ген не нужно вырезать или вставлять - достаточно восстановить его функцию.

На рынок США вышел первый препарат для генной терапии

Технологии

Возможно, разумнее всего не отказываться от CRISPR, а улучшить ее. Например, вирус, доставляющий РНК и фермент в ядро клетки, может быть атакован иммунной системой, что снизит эффективность метода. Чтобы избежать этого, в качестве вектора можно использовать . Технология была испытана сотрудниками МТИ на мышах и показала отличную эффективность: нужные гены оказались отредактированы в 80% клеток. Также технологию можно модифицировать для иных целей. Например, лишить этот инструмент возможности вырезать куски ДНК, оставив только умение прикрепляться к нужной точке генома. В таком случае CRISPR станет идеальной меткой, указывающей расположение мутаций, которые затем можно будет рассмотреть с помощью атомно-силового микроскопа. Это позволит, например, выявлять , ведущие к различным заболеваниям. Метод будет более эффективным, нежели традиционные секвенирование и флуоресцентная гибридизация.

Страхи и сомнения

Как и любая новая технология, генное редактирование вызывает в обществе недоверие. Многие из нас до сих пор боятся есть продукты с ГМО, так что не стоит удивляться протестам против вмешательства в генетический код человека или популяций диких животных. Но если многие страхи легко списать на биологическую неграмотность, то у специалистов по этике есть более серьезные возражения. Что если, научившись редактировать геном эмбрионов ради борьбы с генетическими заболеваниями, мы станем производить на свет «дизайнерских» младенцев с заранее известным цветом глаз и уровнем интеллекта? Специалисты в области генетики считают эти страхи обоснованными, но . Во-первых, геном не определяет то, чем мы являемся, на 100% - не менее важную роль играют воспитание и среда, в которой мы развиваемся. Во-вторых, две других технологии, внедрение которых считали первыми шагами к антиутопиям в духе «Гаттаки», за десятилетия показали свою безопасность. Речь идет об ЭКО и амниоцентезе (анализе околоплодных вод и тканей плаценты). Скорее всего, так же будет и с CRISPR, хотя государственный контроль ее использованию не повредит.

И он уже осуществляется: так, продавать наборы для генетического редактирования в домашних условиях (которые, судя по всему, еще и совершенно бесполезны). Тем, кто хочет поиграть в генного инженера, лучше делать это под присмотром специалиста, например, на курсах, которые организует нью-йорский стартап . За $100 в месяц любой желающий сможет получить доступ к лаборатории и всему необходимому оборудованию. А за $400 можно пройти интенсивный четырехдневный курс технологии CRISPR на примере дрожжей. Хотя большинство участников приходят в лаборатории ради развлечения, с собой они уносят знания о генном редактировании и этических нормах при работе с ним.

Москва, 12 фев — РИА Новости, Татьяна Пичугина. Выступая на Совете по науке и образованию, в котором принял участие глава государства Владимир Путин, академик Ольга Донцова рассказала о "природоподобной" технологии изменения генома CRISPR. В интервью РИА Новости она объяснила, почему в нашей стране следует активнее поддерживать этот метод генной инженерии.

В геноме бактерий содержатся участки, которые играют роль своеобразной иммунной системы, защищающей от бактериофагов — бактериальных вирусов. В 2012 году ученые обнаружили, что эту систему можно модифицировать таким образом, чтобы редактировать с ее помощью геном других организмов.

Система включает молекулу РНК (CRISPR), в которую можно вставить желаемый участок узнавания в геноме, а также участок взаимодействия с белком-ферментом Cas9, который, собственно, разрезает ДНК в клетке другого организма. Таким образом, РНК направляет в нужное место фермент, который вносит разрыв в молекулу ДНК. Далее природная система (она называется "негомологическое соединение концов") сшивает разрыв, при этом могут теряться или добавляться нуклеотидные остатки, меняя таким образом генетическую информацию в месте разреза. В итоге в заранее выбранном участке ДНК возникает мутация.

По словам Ольги Донцовой, возглавляющей кафедру химии природных соединений химического факультета и отдел структуры и функций РНК НИИ физико-химической биологии имени А. Н. Белозерского МГУ, геномное редактирование позволит создавать новые породы селькохозяйственных животных, сорта растений, даст возможность облегчить состояние людей с редкими генетическими заболеваниями и многое другое.

Академик назвала технологию CRISPR/Cas "прорывной" и "природоподобной", поскольку она основана на естественной системе, существующей у бактерий. В ответ на это Владимир Путин поставил задачу в кратчайшие сроки разработать программу геномных исследований.

— Ольга Анатольевна, поясните, почему вы обратили внимание главы государства на технологию геномного редактирования?

— Потому что это прорыв, можно сказать, третья революция в молекулярной биологии после открытия спирали ДНК Уотсоном и Криком и расшифровки генома. CRISPR/Cas позволяет легко и быстро манипулировать с геномом на "природном уровне". Как я объясняла в докладе президенту, это когда мы ничего не делаем в клетке сверх того, что может и природа. С помощью этой технологии, конечно, нам подвластны и более сложные задачи, сугубо для научных исследований. Но широкие перспективы открываются перед самыми разнообразными областями: это не только появление новых полезных сельскохозяйственных культур и пород животных с заданными свойствами, но и разработки систем производства полезных продуктов, например лекарств, когда бактерии, дрожжи и разные клеточные культуры вырабатывают нужные нам вещества. В докладе я упомянула только один аспект применения в медицине (речь идет о миодистрофии Дюшена, редком наследственном заболевании, которое приводит к деградации мышц. — Прим. ред.), но вот, к примеру, у некоторых скандинавов наблюдается мутация, в результате которой они не заражаются ВИЧ. Почему бы не внести направленные мутации в соматические клетки уже больного человека, что поможет остановить распространение вируса по клеткам организма? Это революционная технология, которая в корне меняет представление о том, что мы можем делать с генами и что нет.

— Вы рассказали, что с помощью особой системы разрезают спираль ДНК, которая затем сама себя восстанавливает. Как это происходит?

— Дело в том, что геномный редактор разрезает обе цепи в спирали ДНК. А это очень плохо для клетки, потому что она тогда не может делиться. Она начинает подавать тревожные сигналы с помощью специальных молекул о том, что у нее есть двухцепочечный разрыв. Сигнал распознает особая ферментативная система негомологического соединения концов и начинает сшивать ДНК. Она либо отрезает от цепочек несколько лишних нуклеотидных остатков, либо их добавляет. В зависимости от того, на сколько нуклеотидов изменился фрагмент ДНК, ген, на который мы нацелили редактор, либо перестает работать, "выключается", либо возникает мутация — замена одной аминокислоты на другую, потеря или вставка одной, нескольких аминокислот. Далее ученые могут выбрать ту линию клеток (или животных, растений), которые несут именно то изменение, которое запланировано. То есть, можно сделать так, что ген-мишень продолжает функционировать, белок вырабатывается, но уже немного другой, измененный нужным образом.

— Получается, что CRISPR-системой мы можем выключить какой-то ген в ДНК или что-то в ней поменять?

— Да, выключить или сделать точечную мутацию. Можем добавить в геном дополнительную матрицу, чтобы прочитать ту последовательность, которую нам нужно туда вставить, и таким образом можем заменить какую-то аминокислоту. Это тоже природная ситуация. Что такое генномодифицированные организмы, которых многие боятся? Это когда в геном одного организма встраивают чужой ген — из другого организма. Невозможно предсказать, в какое место ДНК он встроится. В новой технологии никаких чужих генов мы не встраиваем и вообще ничего не делаем сверх того, что не могла бы сделать сама природа. Появился такой инструмент, который позволяет не ждать милости от природы, а быстро и направленно в одном конкретном месте ДНК, которое мы хотим изменить, что-то включить или выключить.

— Допустим, мы выключили какой-то дефектный ген. Почему ДНК не восстанавливается заново с тем же дефектом?

— А потому что мы в обеих цепочках ДНК сделали изменение, обе разорвали. В принципе, существует механизм исправления двухцепочечного разрыва. Гомологическая рекомбинация называется. Она больше используется в конце фазы деления клетки, когда у нас не две, а четыре копии ДНК. Тогда для правильного прочтения и восстановления генома используется вторая копия. Этот механизм, кстати, можно применить для более точного редактирования.

— То есть у метода есть проблемы с точностью?

— Как и у любого научного метода. Собственно, ученые сейчас работают над тем, чтобы повысить его точность. В процессе редактирования генома могут возникать ненужные мутации. Экспериментируя с клетками, ученые обязаны убедиться, что не внесли в их геном ничего непредусмотренного.

— Когда мы говорим об исправлении генома у человека с редким генетическим заболеванием, то речь идет о конкретном индивиде? У его детей генетический дефект проявится?

— Мы можем изменить геном отдельных клеток конкретного больного, чтобы помочь ему справиться с заболеванием, но у его потомков мутация сохранится. Чтобы изменить геном и в половых клетках, нужно вторгаться в эмбрион. Но я считаю, что изменять геном эмбриона человека неэтично. Нельзя этого делать. Вмешиваться в геном эмбриона недопустимо, с моей точки зрения.

— В докладе вы говорили о возможности создания курицы без перьев или картошки без крахмала? Как мы получим такие породы, сорта?

— Это как раз самое простое. Нам известен метаболический процесс, в результате которого вырабатывается крахмал. Если выключить один из ферментов в этом процессе, то получим картошку, если и не совсем без крахмала, то со сниженным его содержанием. Или, к примеру, есть ген, который регулирует развитие мышц. Он в процессе развития организма выключается. Если помешать этому выключению, то получим супермясное животное, которое будет просто под тяжестью своего мяса с трудом передвигаться. Такие эксперименты уже описаны в научной литературе.

Чтобы получить породу, геном редактируют на уровне эмбрионов. Такие эксперименты проводят в лаборатории геномного редактирования МГУ под руководством профессора Петра Сергиева.

— Наши ученые имели какое-то отношение к открытию системы CRISPR?

— Открытие сделали за рубежом, но наши ученые развивают его. К примеру, в Сколтехе под руководством Константина Северинова занимаются разработкой других систем редактирования генома. Это важно, потому что новую систему можно запатентовать. Кроме того, остается проблема точности редактирования, которую решают разными путями.

Много научных групп у нас практически применяют эту технологию в опытах на клеточных культурах, что не менее важно, потому что первые модельные эксперименты делают сначала на клеточной линии, а потом уже на организме.

— Мы можем продемонстрировать уже в ближайшее время какие-то практические результаты, полученные с помощью метода геномного редактирования?

— В области фундаментальной науки эти новые идеи мы быстро освоили, а вот с точки зрения практики немножко отстаем. Но если будет государственная программа, то и практические результаты, безусловно, появятся.

Москва, 12 фев — РИА Новости, Татьяна Пичугина. Выступая на Совете по науке и образованию, в котором принял участие глава государства Владимир Путин, академик Ольга Донцова рассказала о "природоподобной" технологии изменения генома CRISPR. В интервью РИА Новости она объяснила, почему в нашей стране следует активнее поддерживать этот метод генной инженерии.

В геноме бактерий содержатся участки, которые играют роль своеобразной иммунной системы, защищающей от бактериофагов — бактериальных вирусов. В 2012 году ученые обнаружили, что эту систему можно модифицировать таким образом, чтобы редактировать с ее помощью геном других организмов.

Система включает молекулу РНК (CRISPR), в которую можно вставить желаемый участок узнавания в геноме, а также участок взаимодействия с белком-ферментом Cas9, который, собственно, разрезает ДНК в клетке другого организма. Таким образом, РНК направляет в нужное место фермент, который вносит разрыв в молекулу ДНК. Далее природная система (она называется "негомологическое соединение концов") сшивает разрыв, при этом могут теряться или добавляться нуклеотидные остатки, меняя таким образом генетическую информацию в месте разреза. В итоге в заранее выбранном участке ДНК возникает мутация.

По словам Ольги Донцовой, возглавляющей кафедру химии природных соединений химического факультета и отдел структуры и функций РНК НИИ физико-химической биологии имени А. Н. Белозерского МГУ, геномное редактирование позволит создавать новые породы селькохозяйственных животных, сорта растений, даст возможность облегчить состояние людей с редкими генетическими заболеваниями и многое другое.

Академик назвала технологию CRISPR/Cas "прорывной" и "природоподобной", поскольку она основана на естественной системе, существующей у бактерий. В ответ на это Владимир Путин поставил задачу в кратчайшие сроки разработать программу геномных исследований.

— Ольга Анатольевна, поясните, почему вы обратили внимание главы государства на технологию геномного редактирования?

— Потому что это прорыв, можно сказать, третья революция в молекулярной биологии после открытия спирали ДНК Уотсоном и Криком и расшифровки генома. CRISPR/Cas позволяет легко и быстро манипулировать с геномом на "природном уровне". Как я объясняла в докладе президенту, это когда мы ничего не делаем в клетке сверх того, что может и природа. С помощью этой технологии, конечно, нам подвластны и более сложные задачи, сугубо для научных исследований. Но широкие перспективы открываются перед самыми разнообразными областями: это не только появление новых полезных сельскохозяйственных культур и пород животных с заданными свойствами, но и разработки систем производства полезных продуктов, например лекарств, когда бактерии, дрожжи и разные клеточные культуры вырабатывают нужные нам вещества. В докладе я упомянула только один аспект применения в медицине (речь идет о миодистрофии Дюшена, редком наследственном заболевании, которое приводит к деградации мышц. — Прим. ред.), но вот, к примеру, у некоторых скандинавов наблюдается мутация, в результате которой они не заражаются ВИЧ. Почему бы не внести направленные мутации в соматические клетки уже больного человека, что поможет остановить распространение вируса по клеткам организма? Это революционная технология, которая в корне меняет представление о том, что мы можем делать с генами и что нет.

— Вы рассказали, что с помощью особой системы разрезают спираль ДНК, которая затем сама себя восстанавливает. Как это происходит?

— Дело в том, что геномный редактор разрезает обе цепи в спирали ДНК. А это очень плохо для клетки, потому что она тогда не может делиться. Она начинает подавать тревожные сигналы с помощью специальных молекул о том, что у нее есть двухцепочечный разрыв. Сигнал распознает особая ферментативная система негомологического соединения концов и начинает сшивать ДНК. Она либо отрезает от цепочек несколько лишних нуклеотидных остатков, либо их добавляет. В зависимости от того, на сколько нуклеотидов изменился фрагмент ДНК, ген, на который мы нацелили редактор, либо перестает работать, "выключается", либо возникает мутация — замена одной аминокислоты на другую, потеря или вставка одной, нескольких аминокислот. Далее ученые могут выбрать ту линию клеток (или животных, растений), которые несут именно то изменение, которое запланировано. То есть, можно сделать так, что ген-мишень продолжает функционировать, белок вырабатывается, но уже немного другой, измененный нужным образом.

— Получается, что CRISPR-системой мы можем выключить какой-то ген в ДНК или что-то в ней поменять?

— Да, выключить или сделать точечную мутацию. Можем добавить в геном дополнительную матрицу, чтобы прочитать ту последовательность, которую нам нужно туда вставить, и таким образом можем заменить какую-то аминокислоту. Это тоже природная ситуация. Что такое генномодифицированные организмы, которых многие боятся? Это когда в геном одного организма встраивают чужой ген — из другого организма. Невозможно предсказать, в какое место ДНК он встроится. В новой технологии никаких чужих генов мы не встраиваем и вообще ничего не делаем сверх того, что не могла бы сделать сама природа. Появился такой инструмент, который позволяет не ждать милости от природы, а быстро и направленно в одном конкретном месте ДНК, которое мы хотим изменить, что-то включить или выключить.

— Допустим, мы выключили какой-то дефектный ген. Почему ДНК не восстанавливается заново с тем же дефектом?

— А потому что мы в обеих цепочках ДНК сделали изменение, обе разорвали. В принципе, существует механизм исправления двухцепочечного разрыва. Гомологическая рекомбинация называется. Она больше используется в конце фазы деления клетки, когда у нас не две, а четыре копии ДНК. Тогда для правильного прочтения и восстановления генома используется вторая копия. Этот механизм, кстати, можно применить для более точного редактирования.

— То есть у метода есть проблемы с точностью?

— Как и у любого научного метода. Собственно, ученые сейчас работают над тем, чтобы повысить его точность. В процессе редактирования генома могут возникать ненужные мутации. Экспериментируя с клетками, ученые обязаны убедиться, что не внесли в их геном ничего непредусмотренного.

— Когда мы говорим об исправлении генома у человека с редким генетическим заболеванием, то речь идет о конкретном индивиде? У его детей генетический дефект проявится?

— Мы можем изменить геном отдельных клеток конкретного больного, чтобы помочь ему справиться с заболеванием, но у его потомков мутация сохранится. Чтобы изменить геном и в половых клетках, нужно вторгаться в эмбрион. Но я считаю, что изменять геном эмбриона человека неэтично. Нельзя этого делать. Вмешиваться в геном эмбриона недопустимо, с моей точки зрения.

— В докладе вы говорили о возможности создания курицы без перьев или картошки без крахмала? Как мы получим такие породы, сорта?

— Это как раз самое простое. Нам известен метаболический процесс, в результате которого вырабатывается крахмал. Если выключить один из ферментов в этом процессе, то получим картошку, если и не совсем без крахмала, то со сниженным его содержанием. Или, к примеру, есть ген, который регулирует развитие мышц. Он в процессе развития организма выключается. Если помешать этому выключению, то получим супермясное животное, которое будет просто под тяжестью своего мяса с трудом передвигаться. Такие эксперименты уже описаны в научной литературе.

Чтобы получить породу, геном редактируют на уровне эмбрионов. Такие эксперименты проводят в лаборатории геномного редактирования МГУ под руководством профессора Петра Сергиева.

— Наши ученые имели какое-то отношение к открытию системы CRISPR?

— Открытие сделали за рубежом, но наши ученые развивают его. К примеру, в Сколтехе под руководством Константина Северинова занимаются разработкой других систем редактирования генома. Это важно, потому что новую систему можно запатентовать. Кроме того, остается проблема точности редактирования, которую решают разными путями.

Много научных групп у нас практически применяют эту технологию в опытах на клеточных культурах, что не менее важно, потому что первые модельные эксперименты делают сначала на клеточной линии, а потом уже на организме.

— Мы можем продемонстрировать уже в ближайшее время какие-то практические результаты, полученные с помощью метода геномного редактирования?

— В области фундаментальной науки эти новые идеи мы быстро освоили, а вот с точки зрения практики немножко отстаем. Но если будет государственная программа, то и практические результаты, безусловно, появятся.

Этот текст - один из них. Технология CRISPR-Cas9 привлекает большое внимание как ученых, так и всех тех, кто интересуется биотехнологиями. Многие считают, что новый метод точного редактирования генов позволит создать в будущем совершенного человека. «Лента.ру» рассказывает о том, что представляет собой система CRISPR и следует ли ждать от нее чудес.

В начале февраля 2016 года стало известно, что правительство Великобритании разрешило ученым изменять ДНК человеческих эмбрионов в исследовательских целях с помощью системы CRISPR. Речь не идет о создании ГМО-людей, поскольку все модифицированные эмбрионы, полученные через экстракорпоральное оплодотворение, через 14 дней будут уничтожаться. Однако общественность сильно обеспокоилась. Например, директор национальной разведки США Джеймс Клэппер заявил, что потенциально технологии редактирования генома - это оружие массового поражения. Его пессимистический прогноз воплотили в новом сезоне сериала «Секретные материалы», где систему CRISPR использовали для глобального геноцида. Что же такое технология CRISPR, почему она вызывает столько ажиотажа среди ученых, опасений у общественности и что в действительности может дать человечеству?

Изображение: Steve Dixon / Feng Zhang / MIT

Антивирусная защита

CRISPR - это иммунная система бактерий и архей, спасающая микроорганизмы от вирусов. Впервые она была обнаружена японскими учеными в конце 1980-х годов у бактерии Escherichia coli (кишечная палочка). Они заметили, что в геноме бактерии присутствуют повторяющиеся последовательности, разделенные спейсерами - уникальными участками. Однако какую роль все это выполняет, тогда выяснить не смогли. Схожую генетическую структуру-кассету нашли позднее у другого микроорганизма - археи Haloferax mediterranei, а затем и у многих других прокариот. Такие участки стали называть акронимом CRISPR, то есть Clustered Regularly Interspaced Short Palindromic Repeats. По-русски - «короткие палиндромные повторы, регулярно расположенные группами».

Спустя более десяти лет генетики установили, что рядом с CRISPR-кассетами располагаются гены, которые кодируют белки, названные Cas. Известные спейсеры сравнили с последовательностями ДНК из обширных баз геномных данных. Оказалось, что спейсеры очень похожи на участки геномов вирусов-бактериофагов, а также плазмид - кольцевых молекул ДНК, обычно встречающихся у бактерий.

Группа биоинформатиков под руководством Евгения Кунина из Национального центра биотехнологической информации предложила механизм работы CRISPR-кассет и ассоциированных с ними белков Cas. Вирус, проникший в клетку бактерии, обнаруживается комплексом белков Cas, несущих с собой последовательность спейсера. Если последняя совпадает с участком ДНК вируса (протоспейсером), то белки Cas разрезают чужеродную ДНК, предотвращая инфекцию. Позже ученые сумели внести в CRISPR-кассету бактерии спейсер с фрагментом генома бактериофага и наблюдали, как микроорганизм успешно справился с вирусом. Это послужило одним из доказательств предложенной гипотезы.

Спейсеры в CRISPR-кассетах - это шаблон для производства crРНК, которая и отправляется вместе с Cas-белками в атаку на вирус. Откуда же спейсеры берутся? Когда бактерия сталкивается с неизвестным вирусом, она начинает вырезать различные участки ДНК из своего и чужого генома и вставлять их в кассету. Конечно, большинство таких кусков оказываются бесполезными и даже вредными, однако тот, что помогает организму побороть инфекцию, остается в CRISPR и передается потомкам бактерии.

Изображение: Annual Review of Genetics

Проникая в святая святых

Выяснилось, что существует несколько разновидностей системы CRISPR-Cas. Одна из них кодирует не комплекс белков Cas, а всего лишь один - Cas9. Это универсальная молекула, выполняющая сразу несколько функций: она связывает чужеродную ДНК и разрезает ее. Именно в системе с белком Cas9 ученые увидели точный инструмент редактирования генома. В статье, опубликованной в журнале Science в 2012 году, Эммануэль Шарпентье и Дженнифер Дудна предложили в качестве crРНК искусственные последовательности, которые узнавали бы определенные участки ДНК. Тогда Cas9 вносил бы разрезы туда, куда это нужно ученым. Другая исследовательская группа примерно в это же время показала, что система CRISPR-Cas9 может работать с геномами не только в бактериях, но и в клетках других организмов, включая человека.

И до CRISPR-системы были известны способы редактирования генома. Например, с помощью нуклеаз, содержащих цинковые пальцы. Это искусственные ферменты, не существующие в природе и способные расщеплять цепочку ДНК. Цинковый палец - особый белковый модуль, включающий в себя один или несколько ионов цинка. Именно с помощью подобных структур ферменты взаимодействуют с ДНК, РНК и другими молекулами. Ученые соединили цинковый палец с другим модулем, разрезающим цепочку ДНК. Такие нуклеазы могут быть нацелены на определенные участки генома, где и производят разрезы. Проблема в том, что для каждого участка, куда нужно внести разрыв, необходимо синтезировать, выделить и проверить специфичный белок. Кроме того, применение нуклеаз сопряжено с большой вероятностью ошибок: часто разрывы происходили не в тех местах, что были нужны.

Система CRISPR-Cas гораздо удобнее. Функцию разреза на себя берет белок Cas9, одинаковый для любых локусов-мишеней. Все, что нужно сделать, это синтезировать crРНК, которая укажет белку, где именно внести двуцепочечный разрыв. После того как разрыв внесен, включаются системы восстановления ДНК. Во-первых, это механизм негомологичного соединения концов (non-homologous end joining, NHEJ), в результате чего возникают различные мутации, нарушающие функции генов. Если сделать множество таких разрывов, то можно добиться перестройки крупного участка ДНК.

Во-вторых - гомологичная рекомбинация (homologous recombination, HR), когда похожие или идентичные участки ДНК обмениваются между собой нуклеотидными последовательностями. Такой механизм используется для восстановления повреждений двойной цепи, называемых двунитевыми разрывами.

Что касается управляемого редактирования ДНК, то ученым больше подходит гомологичная рекомбинация. С помощью системы CRISPR-Cas можно внести разрывы так, чтобы убрать из ДНК целый участок. При этом генетики подсовывают созданную ими последовательность, которая встраивается на место удаленной. Таким образом можно «ремонтировать» мутации, вызывающие тяжелые заболевания. Ученые убирают дефектный участок гена и заменяют его на нормальный. Более того, можно вносить новые мутации, создавать различные варианты одного и того же гена, добавлять к нему специфические последовательности, что отражается на функциях кодируемого им белка.

Можно исправлять сразу множество дефектных генов. Для этого нужно лишь синтезировать соответствующие crРНК, чьи последовательности совпадают с нужными участками ДНК. Белки Cas9 связываются с crРНК и устремляются «чинить» гены. Следует уточнить, что когда мы говорим о совпадении, то имеем в виду комплементарное соответствие. Принцип комплементарности показывает, в каком случае между различными цепочками ДНК или РНК будут образовываться связи. Нуклеотид А связывается с нуклеотидом Т, а нуклеотид С - с G. Поэтому, например, фрагмент ACTG совпадает с TGAC.

Изображение: Nature

Оружие против болезней

Когда стало понятно, что CRISPR-систему можно использовать для редактирования генома человека, множество лабораторий по всему свету занялись активными исследованиями. Например, используют технологию для создания генно-модифицированных организмов. Одно из направлений - создание кисломолочных бактерий, которые могли бы сопротивляться атаке бактериофагов, уничтожающих культуры полезных микроорганизмов. Но пожалуй, одно из самых интересных применений CRISPR - борьба с ретровирусными инфекциями.

Ретровирусы - к ним относится ВИЧ - вставляют свой геном прямо в ДНК зараженной клетки. В журнале Scientific Reports опубликована работа, демонстрирующая, как с помощью CRISPR-Cas9 можно очистить пораженные ВИЧ Т-лимфоциты и даже воспрепятствовать повторному встраиванию вируса. Генетики просто-напросто внесли в культуру T-клеток гены, кодирующие crРНК и Cas9, которые, в свою очередь, успешно вырезали ДНК вируса из генома лимфоцитов.

Китайские ученые проводили эксперименты на эмбрионах человека еще до того, как подобные исследования разрешили в Великобритании. В апреле 2016 года генетики сообщили, что они изменили гены зародышей, чтобы сделать их неуязвимыми к ВИЧ. С помощью CRISPR они внесли ген, который встречается у людей, невосприимчивых к инфекции.

Пригодилась система CRISPR и в борьбе с раком. Например, в работе, опубликованной в Nature Biotechnology, показано, что с помощью модифицированного белка Cas9 можно отключать определенные гены и тем самым определять их роль в перерождении нормальных клеток в злокачественные. Если выяснится, что мутация в определенном гене способствует развитию рака, то следующий шаг - исправление дефекта с помощью генетических манипуляций.

CRISPR способен помочь в лечении рака крови - лейкемии. Вместо того чтобы искать донора костного мозга, можно взять образцы тканей кроветворного органа самого пациента, исправить дефективные стволовые клетки, избавив их от роковой мутации, а затем пересадить обратно. Если злокачественные клетки, оставшиеся в больном организме, уничтожить облучением, исправленные клетки получат возможность размножаться и производить здоровые клетки крови.

Ящик Пандоры

Опасна ли система CRISPR? На нынешнем уровне развития нет. Опасения в большей степени связаны с тем, что редактировать геном человека с целью лечения наследственных заболеваний пока еще рано. Технология пока еще сырая. Так, работы китайских ученых были раскритикованы за большое количество разрывов ДНК, возникших не в том месте. Кроме того, только в нескольких из полусотни эмбрионов была произведена правильная замена участка гена.

Если технология редактирования генома и избавит человечество от наследственных заболеваний, рака, вирусов, то это дело будущего, которое, возможно, гораздо дальше, чем думают оптимисты. Что же касается создания улучшенных людей и связанных с этим этических проблем, то это вообще за пределами того, на что способна система CRISPR.

Технология CRISPR/Cas9, позволяющая вносить изменения в геном высших организмов (в том числе человека) стала в последние годы одной из самых обсуждаемых - не только молекулярными биологами, но и биотех-инвесторами, медиками, социологами - тем. Все дело в том, что CRISPR/Cas9 потенциально имеет перспективы применения для борьбы с многими тяжелыми заболеваниями, среди которых рак, наследственные болезни, ВИЧ. Если раньше генетические технологии применялись в первую очередь для диагностики, то теперь мы впервые подошли к новому рубежу - у нас есть инструмент редактирования ДНК, который, возможно, получит все больше внедрений в клиническую практику и программы лечения. Хотя ранее попытки редактирования генома уже были (например, для больных лейкемией) именно CRISPR/Cas9, как более универсальный инструмент, претендует на создание инструментов для все более активных внедрений. Старт дан: в Китае уже делают первые шаги в клинических испытаниях технологий, основанных на CRISPR/Cas9. Растущие возможности генной терапии ставят перед нами все больше вопросов, связанных с этикой. Чего ждать?

CRISPR/Cas9 - «ножницы» вместо «ножа» для ДНК

Способы редактирования генов в геномах живых существ изучаются с начала XX века – еще с открытия механизма индуцированного мутагенеза (то есть вызванного воздействием каких-нибудь внешних агентов – например, радиоактивного излучения или химических веществ). И если для бактерий механизмы достаточно точного модифицирования генов разработаны еще в середине XX века, то для более сложных организмов, в частности, человека, подходы появились лишь в конце прошлого века. Например, целое семейство вирусов, называемое ретровирусами (к которым относится и ВИЧ, вызывающий СПИД у человека), от природы получило механизм, согласно которому для функционирования вируса требуется встраивание его генома в геном организма-хозяина. Путем введения модификаций в геном ретровируса, то есть вставки измененных человеческих генов, можно добиться внедрения в геном хозяина таких квазичеловеческих элементов – вот и готовый механизм геномного редактирования. Существенным его недостатком является отсутствие специфичности встраивания, то есть вирусный геном может попасть в любой участок генома хозяина, а может и вообще не попасть. Для научных изысканий это нестрашно – всегда можно повторить эксперимент. Но для целей лечения конкретных пациентов подход с «повторить», как правило, не работает.

Другие способы модификаций генома связаны с технологиями ZFN и TALEN, активно обсуждаемые начиная с 2000-х годов. Идея этих подходов основана также на природных свойствах определенных белков, называемых нуклеазами. Эти активные белки (ферменты) умеют проводить специфическое, неслучайное вырезание участка исходного генома и встраивание в место разреза привнесенного с собой кусочка исправленной ДНК. Такой способ позволяет проводить целевую, гораздо более точную, чем просто ретровирусная, модификацию «сломанных» генов. Отличие ZFN и TALEN заключается в использовании разных видов ферментов, но итог их работы примерно одинаков.

В 2015 году технологию ZFN удалось успешно применить для терапии ВИЧ: в стволовых клетках донора был отредактирован участок, отвечающий за восприимчивость ВИЧ, затем они были трансплантированы пациенту. Стоит отметить, что примерно у каждого тысячного европейца имеется такой генотип, который гарантирует невозможность внедрения вириона (активной вирусной частицы, которая осуществляет заражение) внутрь клеток организма-хозяина, то есть невозможность инфицирования.

Если разрезать последовательность ДНК в двух местах, то можно воспользоваться естественными механизмами репарации ее цепочки - не дать ей соединиться с другой ДНК или просто «сшить» два конца, а добавить в место разрыва нужный, введенный заранее, фрагмент. Место надреза помогают локализировать специальные белки, которые привязаны к определенным последовательностям генов и связывающие участки генома. Оказалось, что у таких белков есть участки с ионом цинка, которые делают их еще более специфичными фрагменту ДНК - соотносит их только с тремя нуклеотидами. Если прикрепить эти «цинковые пальцы» генно-инженерных белков в качестве идентификаторов к «ножницам» (их роль выполняет специальный вид нуклеазы, фермента для реакций между нуклеиновыми кислотами) - можно достаточно точно выявить последовательности генов с обеих сторон от места нужного «разреза». Так работает технология ZFN (Zinc finger nuclease). В основе технологии TALEN (Transcription Activator-Like Effector Nuclease) - схожие принципы, только для создания ДНК-связывающего участка белка, «знающего» нужную последовательность генов, используются TAL-белки.

Но ZFN и TALEN оказались далеки от массового применения в медицине. Ученые пытались научить их узнавать специфическую, в идеале - любую заданную последовательность ДНК для «кусания». Иногда это работало, но для каждой последовательности приходилось создавать свой отдельный белок, а это кропотливая и долгая работа.

Иное дело - редактирование генома с помощью системы CRISPR/Cas9. В ней используется один белок (комплексы белков CAS), а «путеводитель» для нахождения участка ДНК для необходимых модификаций можно сделать очень быстро и дешево. Благодаря определенным участкам генома CRISPR, которые хранят генетические последовательности вирусов, белок CAS разрезает соответствующие последовательности. С этим могут работать очень и очень многие хорошо оборудованные лаборатории. Именно поэтому технология CRISPR/Cas9, изначально открытая как защитный механизм бактерий от вирусов в конце 1980-х, вызвала такой ажиотаж.

Пока неочевидно, какие технологии геномного редактирования будут наиболее активно применяться в медицине уже через 10 лет. Возможно, это будет CRISPR/Cas9 или текущие аналоги, а может быть, будет открыта новая технология, которая возникнет так же неожиданно и ярко, как CRISPR/Cas9.

А пока между двумя научными группами, которые в 2012 году одновременно нашли способ применения CRISPR/Cas9 для точечного редактирования геномов сложных организмов, идет патентная война. Группа в Калифорнийском университете в Беркли и группа из MIT и Broad Institute (институт MIT и Гарварда), подавшие заявки на патент в разное время в 2013 году, тратят десятки миллионов долларов на юристов и вряд ли остановятся - на кону миллиарды долларов, которые может принести технология. По прогнозам, патентный офис примет решение в 2017 году.

Венчурные инвесторы уже активно инвестируют в компании, развивающие CRISPR/Cas9. Только за 2016 год три такие компании вышли на IPO. Капитализация первой, Editas Medicine, составляет $542 млн, а среди ее инвесторов до выхода на NASDAQ - Билл Гейтс . Вторая, Intellia Therapeutics, достигла капитализации $600 млн, а среди ее первых инвесторов оказался швейцарский фармацевтический гигант Novartis (№ 47 в глобальном списке Forbes).Третья, CRISPR Therapeutics, пока прошла отметку в капитализации лишь в $107 млн, в ее финансировании участвует фармкомпания Bayer (№97 в глобальном списке Forbes).

Применение и этические вопросы

Среди потенциальных применений новой технологии - лечение наследственных заболеваний (гемофилия, бета-талассемия, мышечная дистрофия), терапия онкологии и вирусных инфекций, включая ВИЧ.

Но есть и более экзотические потенциальные применения. Например, борьба с мультифакторными заболеваниями (диабет, шизофрения и др.) или редактирование эмбрионов при искусственном оплодотворении для подбора определенной внешности у детей. Именно здесь возникает множество этических вопросов, которые начали обсуждаться, но пока так и не получили консенсусного решения у мирового сообщества. Когда же можно, а когда нельзя применять редактирование генома? Пока, в отсутствие у человечества единой позиции, каждая из стран решает это по-своему.

Например, мир потрясли уже два исследования китайских ученых. В 2015 году группа китайских ученых применила геномное редактирование на 86 человеческих эмбрионах для того, чтобы изменить мутации, вызывающие тяжелую наследственную патологию бета-талассемию. Это тяжелая наследственная патология, которая связана с нарушением синтеза гемоглобина и разрушением эритроцитов, средняя продолжительность жизни носителей мутации - 17 лет. Несмотря на серьезную научную значимость исследования китайских ученых, два главных научных журнала Nature (Великобритания) и Science (США) отказались публиковать результаты, в частности из-за этических вопросов. Также это исследование показало неидеальность технологии CRISPR/Cas9, по крайней мере на данный момент. Из 86 эмбрионов точно поменять желаемый участок ДНК получилось только у 28. Процент ошибки оказался больше, чем ожидали исследователи исходя из опытов над эмбрионами животных. Какой участок ДНК нужно редактировать, определяется при помощи синтетической последовательности РНК (так называемый «гид»). Она комплементарна нужному участку ДНК. Но может оказаться, что в другой части генома также есть аналогичная последовательность нуклеотидов.

Исследование вызвало множество дискуссий. Должны ли западные страны очень аккуратно относиться к этическим вопросам при применении новых технологий геномного редактирования, либо же это приведет только к отставанию от Китая? По всей видимости, пока Запад рассматривает возможность терпимее относиться к генетическим модификациям - менее чем через полгода после скандальной публикации китайских исследователей в Великобритании были официально разрешены первые опыты по геномному редактированию эмбрионов человека, в Лондоне новые группы ученых уже ведут работу над дизайном новых экспериментов.

А в середине ноября группа китайских ученых анонсировала применение генной модификации клеток при помощи CRISPR/Cas9 для лечения пациента с агрессивным раком легкого. В журнале Nature эта статья анонсирована с подзаголовком: «Шаг китайских ученых может разжечь борьбу между Китаем и США в сфере биомедицины». Мир ждет результатов второго исследования китайских ученых.

Однако в будущем этических вопросов, связанных с новыми технологиями в области генетики и репродукции, будет еще больше. Биоэтика становится все более важной дисциплиной.

Например, у некоторых европейцев есть мутации в гене CCR5 - ее носители практически невосприимчивы к ВИЧ. В рамках генетического тестирования эти мутации могут быть исследованы. Но этично, корректно ли рассказывать человеку о наличии такой мутации? Мы, как компания, которая занимается генетическими тестами, решили, что нет.

Другие проблемы связаны с тем, что возможности генетического редактирования меняют само понятие семьи. С появлением искусственного оплодотворения и суррогатного материнства в принципе понимание института семьи усложнилось. Теперь у некоторых детей помимо отца могут быть две матери: суррогатная и «юридическая». А если для зачатия используются яйцеклетка и сперматозоид пары, которые затем переносятся в суррогатную мать, у ребенка тоже две матери - генетическая и суррогатная. Теоретически возможны ситуации, когда юридическая, генетическая и суррогатная мать - это три разных человека.

Юридические нюансы, возникающие в подобных случаях, уже получают оценки. Например, «Baby M Case »: у Элизабет Стерн был рассеянный склероз, который несет много рисков при беременности, поэтому семья Стерн обратилась в один из медицинских центров в Нью-Йорке для суррогатного материнства. Использовался генетический материал отца. Между сторонами был подписан договор, что юридическими родителями будут Стерны. Но вскоре после рождения суррогатная мать Мэри Бет Вайтхед под угрозой суицида потребовала вернуть ей ребенка. В дело включились полиция и суд. В итоге суд признал Стернов официальными родителями ребенка, но дал суррогатной матери возможность посещения ребенка. Интересно, что основной мотивацией суда было преследование «лучших интересов ребенка». В другой схожей истории, тоже произошедшей в Нью-Йорке, суд рассудил иначе: двое родителей лучше трех, решил суд, отказав в правах посещения ребенка суррогатной матери. Есть деталь: во втором случае пара использовала собственные яйцеклетку и сперму, которые были перенесены в суррогатную мать.

«Офшоры» для геномного редактирования

Недавно мир потрясло рождение ребенка от трех генетических родителей: в апреле 2016 года появился на свет ребенок, зачатие которого происходило с использованием митохондриальной ДНК третьего человека. Такая процедура была необходима, так как у матери ребенка есть патогенные мутации в митохондриях (органеллы внутри клеток человека, отвечающие за обеспечение клеток энергией, обладают собственным небольшим геномом, передаются ребенку от матери), которые могли привести к появлению у ребенка синдрома Лея, наследственному заболеванию, связанному с поражением ЦНС и энцефалопатией. Два первых ребенка матери погибли от синдрома Лея. Американский врач Джон Чанг, из клиники в Нью-Йорке вместе с родителями из Иордании прибыли в Мексику. И в Иордании, и в США подобные модификации генетического материала были запрещены.

Получается, в современном мире появляются «биомедицинские офшоры». Люди едут в страны с лояльным законодательством для осуществления процедур, неоднозначных с точки зрения этики и допустимости законодательством той или иной страны. Генная терапия уже становится в центре подобных «спорных» случаев. Например, американка Лиз Пэрриш утверждает, что прошла в Колумбии процедуру по редактированию специальных участков ДНК-теломер при помощи вируса. Длина теломер коррелирует со старением. Пэрриш стала первым человеком, решившимся на генетическую терапию для борьбы со старением, до нее эксперименты проводились только на животных. Научное сообщество отнеслось к самовольным клиническим испытаниям Пэрриш неоднозначно, многие подвергли ее действия критике.

В целом на данный момент мировое сообщество с очень большой осторожностью относится к редактированию генома, когда оно не связано напрямую с лечением тяжелых заболеваний, которые нельзя вылечить иным способом. Дело в том, что технологии еще несовершенны и не максимально специфичны. Так, в уже упомянутом эксперименте китайских ученых над эмбрионами в ДНК многих эмбрионов изменились не только участки, которые планировали изменить ученые, но и другие, случайные. Или, например, когда во Франции генную терапию решили применить для лечения врожденного X-сцепленного иммунодефицита, в ходе клинического испытания неожиданно в качестве побочного эффекта у больного развилась лейкемия.

Ребенок на заказ

В целом медицинское и научное сообщество сейчас более лояльно к генной терапии, которая будет влиять только на генетический материал самого человека. Генные модификации, которые передавались бы детям, все еще изучены недостаточно и остаются в «серой зоне». Но в определенной степени выбор определенных черт ребенка с помощью генетических технологий доступен уже сейчас.

В ходе искусственного оплодотворения можно пройти процедуру преимплантационной генетической диагностики или преимплантационного генетического скрининга. При ЭКО (искусственном оплодотворении, вне тела матери, с последующим переносом 2-5-дневного эмбриона в полость матки) на сегодняшний день оплодотворяется несколько яйцеклеток. Можно исследовать геном каждой из них и выбрать наиболее «подходящие» эмбрионы. Такая процедура уже довольно активно используется для профилактики тяжелых наследственных патологий у семей с соответствующими рисками. Однако данная технология, очевидно, может быть применена для выбора черт, не связанных со здоровьем - например, цвета глаз или волос. Это, безусловно, несколько пугающая ситуация, заставляет задуматься о способах применения новых генетических технологий для евгеники, для других манипуляций, описанных фантастами в антиутопиях. Разные страны уже вырабатывают позицию по влиянию родителей на генетические данные своих детей.

В Китае, например, запрещено использование преимплантационной генетической диагностики для выбора пола будущего ребенка. Но такая процедура не запрещена в Штатах. Но волнуют китайцев этические вопросы или для подобного законодательного регулирования важнее демографические причины - большой вопрос.

Но важно, чтобы свои взгляды на границы генетических вмешательств сформировали не только правительства, но и обычные люди. Иначе мы рискуем оказаться в ситуации неосведомленности населения о базовых принципах генетических технологий и распространения предрассудков. Недавняя волна заявлений об опасности ГМО для человека - яркое тому подтверждение. Один из опросов в Казани, например, показал, что почти половина респондентов считают, что «любые пищевые продукты, содержащие гены», должны быть изъяты из продажи и не должны импортироваться или производиться в стране. Очевидно, что гены есть в любом живом организме, так что такие результаты исследования просто плачевны. Впрочем, 15% опрошенных честно признались, что не представляют себе, что такое ГМО. Ученым, биомедикам и просто тем, кто верит в то, что технологии делают нашу жизнь лучше, теперь нужно сделать все, чтобы генетическое редактирование человека не столкнулось с той же волной необоснованной паники, а стало действительно эффективным инструментом в борьбе с болезнями.