Пять направлений использования роботов в медицине. Роботы в медицине: обзор современных технологий Роботы в медицине

Использование робототехники в здравоохранении развивается во многих странах. Темпы внедрения медицинских роботов в повседневной работе медиков стремятся к уровню промышленной робототехники. Что характерно, использование умной медицинской техники актуально не только и не столько для развитых стран, сколько для регионов, где с медицинским обслуживанием проблемы. В каких же областях медицины роботы активно используются сегодня?

Хирургические роботизированные технологии

В прошлом единственным способом лечение эпилепсии была травматическая операция на головном мозге со вскрытием черепной коробки. Сегодня, благодаря специальным разработкам в медицинской робототехнике, такие операции успешно производятся при мощи различных систем с помощью ограниченного инвазивного проникновения в мозг.


Прототип такого устройства был создан инженерами и учеными из университета Вандербильта. В мозг пациента он проникает через щеку и в этом его главная особенность. Свой вариант подобного робота предложили в Испании. Он носит поэтическое имя Rosa и предназначен для имплантации в мозг пациента специальных электродов.

Инвазивная хирургия применяется и при лечении других заболеваний. С помощью хирургического робота Да Винчи по всему миру уже выполнено более полутора миллионов операций по всему миру. Сегодня это самый массовый хирургический робот. С его помощью выполняются полостные операции различного характера. Это операции на сердце, легких, желудочное шунтирование и еще множество других.

Робот-помощник для медицинского персонала
Второе популярное направление медицинской робототехники – создание роботов помощников для медицинского персонала. Эти искусственные «медбратья» могут служить курьерами и самостоятельно доставлять лекарства и прочие вещи от врача к больному или между отделениями, освобождая персонал от малопродуктивной деятельности. К этому классу можно отнести роботов семейства Hospi


Подобные роботы курьеры имеют встроенную систему ориентации и способны найти самостоятельно кратчайший путь от одной точки к другой. Роботы типа RIBA могут заниматься доставкой пациентов из палаты в специализированные кабинеты для проведения лечебных процедур.

К роботам помощника можно отнести и роботизированные наглядные пособия для студентов-медиков. Сегодня создано целое семейство подобных тренажеров для будущих врачей самых разных специальностей. От стоматологов, до будущих хирургов и гинекологов.

Роботы для больных параличом
Следующим магистральным направлением можно считать создание медицинских роботов для помощи людям с парализованными конечностями или тем, кто не в состоянии передвигаться вообще. Это и специализированные роботизированные устройства, экзоскелеты различного типа, мобильные платформы для транспортировки больных.

Роботы для ухода за больными и пожилыми людьми
Проблемы, связанные с уходом за больными и престарелыми были актуальны всегда. Так что актуальность этой тематики для разработчиков соответствующих роботов понятно. В некоторых странах, например в Японии, принимаются специальные программы...

Робототехника сегодня завоевывает разнообразные области, в которых, казалось бы, всегда будут трудиться люди. Одна из этих областей – медицина. Сегодня роботы делают сложные операции или заменяют органы, жизненно важные для человека. Итак, представляем вам 10 медицинских роботов.

Cue

Биолог Аюб Кхаттак и дизайнер Клинт Север создали устройство, которое должно помочь людям, чувствующим недомогание. Аппарат Cue, анализирующий состояние здоровье своего пользователя, обладает компактными габаритами, что упрощает его повседневное использование. На данный момент Cue показывает уровень витамина D, тестостерона, а также умеет определять способность человека к воспроизводству. Кроме того, аппарат выявляет у своего хозяина наличие таких заболеваний, как ВИЧ и грипп. Для того, чтобы провести анализ, в специальный картридж необходимо поместить образец слюны, крови или слизистой оболочки пользователя. Анализ производится в течение нескольких минут.

Ubot-5

В Массачусетском университете был создан робот, помогающий людям пережить последствия инсульта. Так, в 2013 году Ubot-5 помог восстановиться 72-летнему мужчине, имеющему проблемы с сердцем. Робот умеет оценивать состояние речи больного, а также делать пациенту физиотерапию. По итогам роботы Ubot-5 с больным был выявлен положительный эффект как в области движения, так и в области речи больного.

Argus II

Компанией Second Sight разработала устройство, которое способно частично восстановить зрение незрячим. Вначале необходимо имплантировать специальную матрицу электродов. Кроме того, необходимы солнечные очки с миниатюрной видеокамерой. Изображение, которое попадает в объектив этой видеокамеры, передается к визуальному процессору, который находится на поясе пользователя. Далее визуальный процессор посылает данные изображения на очки в виде 60-пиксельных черно-белых изображений, которые, в свою очередь, передаются на упомянутые выше матрицы. Электроды этих матриц воздействует на фоторецепторы и клетки, передающие сигналы от фоторецепторов в зрительный нерв. Безусловно, Argus II передает пользователю изображения в виде довольно грубых форм, однако данное устройство помогает незрячим ориентироваться в пространстве.

Lightbot

Конструкторы из японской компании NSK создали робота-поводыря Lightbot, способного помогать незрячим людям, а также людям, имеющим проблемы с передвижением. Ориентируется Lightbot в окружающем мире, используя трехмерный датчик. Робот умеет распозновать препятствие, передвигается по лестнице как вверх, так и вниз. Благодаря колесам Lightbot умеет не только шагать, но и ездить. Кстати, скорость движения робота зависит от скорости движения использующего его человека.

Robocast

Ученые из Великобритании, Германии, Италии и Израиля создали робототехническую систему Robocast, призванную помочь нейрохирургам. Основная задача этой системы – помочь во время операций по трепанации мозга. Как известно, данная операция является крайне опасной и трудоёмкой: ошибка на миллиметр может привести к необратимым повреждением головного мозга. Robocast обладает системой «мозг – компьютер», которая включает в себя автоматический планировщик траектории инструмента, управляющий механизм с обратной связью, набор датчиков операционного поля, микроконтроллеры и двух роботов. Таким образом, большой робот контролирует своего маленького коллегу, размещает его в необходимом месте и координирует его в нужном направлении. Маленький робот необходим для внедрения хирургического инструмента в мозг пациента. Кроме того, Robocast всегда можно перевести на ручное управление.

Veebot

Обычный врач далеко не всегда попадает в вену с первого раза. Поэтому для забора крови компания Mountain View был создан робот Veebot. Робот определяет место нахождения вены в руке пациента, используя камеру, специальное программное обеспечение и инфракрасную подсветку, а также Weebot исследует вену при помощи ультразвука. Таким образом робот определяет, что толщина вены достаточна для прокола.

7 Finger Robot

Ученые из Массачусетского института технологий создали специальное устройство, увеличивающее количество пальцев на руке до семи. В первую очередь, дополнительные пальцы предназначены для людей, которым приходится пользоваться лишь одной рукой. Движениями механических пальцев управляют биологические пальцы пользователя. Другими словами, дополнительные пальцы копируют те движения, которые делают человек (например, захватывающее движение). Также, благодаря своим сервомоторам, дополнительные пальцы способны развивать силу, равную силе обычных пальцев.

Робот-сиделка VGo

Американской компанией Vgo Communication был создан робот-сиделка для больных, прошедший тестирование в одной из бостонских детских больниц. Основные задачи робота VGo заключаются в том, чтобы помочь в восстановлении больным, а также обеспечить им связь с внешним миром. Например, благодаря роботу VGo, дети, проходящие лечение в больнице, могут дистанционно посещать школу. Кроме того, робот позволяет администрации больницы контролировать деятельность своих подчиненных. Рост VGo составляет 164 сантиметров, передвигается он на четырех колесах. Ещё VGo может делать анализ крови пациентов.

Amigo

Ученые Лестерского университета (Великобритания) сконструировали медицинского робота Amigo, задачей которого является лечение аритмии сердца. Робот может помочь врачам вводить катетер к поврежденным участкам сердца. Amigo также способен подать больному стакан воды. Робот подключен к единой сети, в которой объединены разнообразные роботы по всему миру. Цель данной сети состоит в объединении информации о возможностях роботов, а также в создании программного обеспечения и навигационных карт, что должно сделать этих роботов доступнее в использовании.

Jukusui-Kun

Доктор Кабе, работающий в лаборатории японского университета Waseda, создал робота-подушку под названием Jukusui-Kun. Подушка выглядит как мягкая игрушка-медведь. Основные пользователи Jukusui-Kun – люди, страдающие синдромом апноэ сна. Во время сна такие люди испытывают трудности с дыханием – их мучает хронический храп. К робоподушке прилагаются беспроводной датчик, который подкладывается под простынь, беспроводной датчик, который прикрепляется к пальцу пациента, а также микрофон. Подушка анализирует состояние пользователя во время сна, уровень шума, движения спящего, а также количество кислорода в крови. На движения спящего Jakusui-Kun реагирует поглаживанием, после чего человек принимает позу, наиболее благоприятную для сна.

В мировую медицину активно интегрируются искусственный интеллект и сложные методы автоматизации из робототехники. Применение роботов поднимает здравоохранение на новый уровень, оптимизируя ход лечения, отслеживания динамики, проведения анализа и хирургических операций. Ниже представлена подборка из 10 любопытных медицинских роботов, выпущенных на сегодняшний день.

Робот-ассистент da Vinci

Производитель: компания Intuitive Surgical, США.

Головной офис компании Intuitive Surgical, Inc. расположен в городе Саннивейл, штат Калифорния. Считается мировым лидером в роботической малоинвазивной хирургии.

Краткая справка о роботе

Робот da Vinci разработан как вспомогательный инструмент для хирургов. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно. Робот использует специальные инструменты, включая миниатюрные камеры для визуализации и стандартные инструменты (т.е. ножницы, скальпели и пинцеты), разработанные для точной диссекции при проведении полостных операций.

За 2016 год было проведено 750 000 операций с помощью da Vinci. С момента выпуска робота – 4 000 000. По состоянию на 31 декабря 2016 года в мире было установлено 3919 систем. В России – 26 систем во всех крупных городах. Создатели робота da Vinci нацелены на решение ряда проблем в хирургии. Во-первых, улучшенное качество изображения (в 3D), которое помогает хирургам и персоналу преодолеть ограничения невооруженного глаза при идентификации тканевых структур при операции. Во-вторых, внедрение интеллектуальных систем. Современные датчики, обеспечивающие одновременную обратную связь, упрощают выявление тканевых структур как источника осложнений и вариабельности.

Робот Preceyes

Производитель: компания Preceyes B.V., Голландия.

Головной офис компании Preceyes B.V. расположен в городе Эйндховен, провинция Северный Брабант. Целью компании считается развитие новых высокоточных методов терапии и облегчение способов проведения витреоретинальной хирургии.

Робот Preceyes разработан как деликатное роботизированное решение для помощи хирургам-офтальмологам при проведении операции. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно – через сенсорный экран и джойстик. Компания Preceyes B.V. ставит еще одной своей целью повышение профессионализма хирургов, а не замену человека машиной.

Краткая справка о роботе

Первая операция с использованием робота Preceyes прошла в оксфордской клинике Джона Рэдклиффа в Великобритании в 2016 году. Создатели робота Preceyes нацелены на решение ряда проблем в хирургии:

  • смягчение резких неосторожных движений хирурга, что помогает хирургу исключить повреждения внутренних органов;
  • повышенная точность. Точность движений робота – 1 на 1000 долей миллиметра.

Робот Veebot


Производитель: стартап Veebot, США.

Информация о головном офисе отсутствует. Целью компании считается предоставление точного и непродолжительного забора крови у пациента с автоматизацией процесса и проведением инфузионной терапии.

Краткая справка о роботе

Робот Veebot пока проходит испытания и демонстрирует выбор места введения иглы в 83% случаев. Создатели машины заявляют о планах повысить результат до 90% перед проведением первых клинических испытаний. Для зажатия и улучшения визуализации вен робот оснащен рукавом. Также для улучшения видимости вен применяются инфракрасные и звуковые датчики, вид с камеры и четкий алгоритм для определения места, наклона и глубины введения иглы.

Робот SurgiBot


Производитель: компания TransEnterix, США.

Головной офис компании TransEnterix находится в городе Моррисвилль, штат Северная Каролина. Компания считается пионером в области применения робототехники для повышения качества малоинвазивной хирургии. Также компания нацелена на решение клинических и экономических сложностей при проведении лапароскопии.

Краткая справка о роботе

Роботизированная система SurgiBot TM разработана как малоинвазивная платформа с применением инструментов в ходе единичного рассечения. Применение гибких инструментов при операции контролируется хирургом из стерильного поля. Робот оснащен щупами, регулятором чувствительности управляющих ручек и камерой с фонариком, которая выводит изображение хода процесса на стандартный монитор.

Робот SurgiBot пока не доступен для покупки.

Робот Smart Tissue Autonomous Robot (STAR), США


Производитель: "Национальный детский медицинский центр" (Children"s National Medical Center), город Вашингтон, округ Колумбия. Ученые-разработчики нацелены на создание высокоточного робота для автономных операций на мягких тканях.

Краткая справка о роботе

Робот STAR основан на работе технологии NVIDIA GeForce GTX TITAN GPU с применением механической руки, с 3D-камерой, машинным зрением в ближнем диапазоне инфракрасных волн и биомаркерами для четкой ориентации в оперируемой полости.

Система Robodoc


Производитель: компания Curexo Technology Corporation, США.

Головной офис компании Curexo Technology Corporation расположен в городе Фремонт, штат Калифорния. Миссия компании заключается в повышении заботы о пациентах посредством работы над качеством и создания точных роботизированных платформ.

Краткая справка о роботе

На территории США, Европы, Японии, Кореи и Индии при помощи Robodoc было проведено 28000 операций по замене суставов.

Работа с роботом включает два этапа: планирование и составление плана перед операцией. В ходе первого этапа пациент проходит КТ-сканирование для получения и вывода изображения на 4 рабочих окна, составляющих один экран. После выбора и анализа точной анатомической структуры импланта из базы идет планирование операции с передачей информации на вспомогательный механизм ROBODOС Surgical Assistant. Робот оснащен фиксаторами и специальным регистратором DigiMatch, формирующим точное изображение картины костной ткани в пространстве.

Auris Robotic Endoscopy System (ARES)

Производитель: компания Auris Surgical Robotics, США.

Головной офис компании Auris Surgical Robotics расположен в Силиконовой долине. Компания нацелена на создание нового поколения хирургических роботов, способных расширить сферу применения специализированных платформ для проведения медицинских процедур.

Краткая справка о роботе

В конце 2014 года было проведено клиническое исследование с участием пациентов с подозрением развития рака. Типы хирургических операции проводятся за счет взаимозаменяемости механических рук робота с инструментами и гибкого эндоскопа. Среди инструментов отмечены лазеры, пинцеты, иглы и скальпели, при помощи которых хирург проведет биопсию, операцию по восстановлению слизистой желудка и иссечение опухолей. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через рабочую станцию на рабочем столе компьютера.

Роботизированная установка CorPath 200

Производитель: компания Corindus Vascular Robotics, США.

Головной офис компании Corindus Vascular Robotics расположен в городе Уолтем, штат Массачуссетс. Компания считается мировым лидером в области роботизированной сердечно-сосудистой хирургии.

Краткая справка о роботе

Роботизированная установка CorPath 200 предназначена для коронарной ангиопластики с расширением суженных или заблокированных артерий. Стандартное проведение операции допускает риск облучения из-за рентгена. Установка не запрограммирована под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через джойстик. Удаленный контроль уточняет движение катетера и повышает безопасность пациента.

Магнитные микророботы


Производитель: Федеральная политехническая школа Лозанны (EPFL), Франция, и Eidgenössische Technische Hochschule Zürich (ETHZ), Швейцария.

Краткая справка о роботе

Магнитные микророботы предназначены для точечной доставки лекарственных веществ в организм пациента. Структура микроробота имитирует тело червя Trypanosoma brucei, который передвигается при помощи регулярного сжатия придатка-жгутика. Использование биосовместимого гидрогеля и магнитных наночастиц делает микророботов безмоторными, гибкими и мягкими. Управление проходит через электромагнитное поле, которое преобразует магнитные наночастицы в крепления и инициируют движение микроробота.


Страна-производитель: компания Medtech S.A., Франция.

Головной офис компании Medtech расположен в городе Монпелье. Миссия компании заключается в создании отношений, инструментов и программ, нацеленных на внедрение передовых медицинских решений на рынок медицинских услуг.

Краткая справка о роботе

Робот Rosa разработан для результативности и безопасности хирургических операций по неврологии. Робот Rosa – единственный роботизированный механизм, который прошел одобрение на проведение неврологических операций на территории Европы, США и Канады. Механизм работает по принципу GPS для черепа в ходе краниальных операций, требующих хирургического планирования на основании предоперационной информации, точной анатомии пациента и управления инструментами. Робот Rosa включает нейронавигационную станцию и высокоточный манипулятор, которые повышают безопасность и скорость точных нейрохирургических операций.

Профессор Дмитрий Пушкарь говорит: "Роботизированная хирургия стала настоящим переворотом в медицине. Робот da Vinci изменил качество хирургии во всем мире".

Применение роботов в медицине аналогично революции, которая предвосхищает тесное взаимодействие человека и технологий. Благодаря автоматизации снижается роль человеческого фактора, приводящего к ошибкам врачей, а лечение становится доступнее.

Фото: roboticsbusinessreview.com

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Рассмотрение принципа работы медицинского робота "Да Винчи", позволяющего хирургам выполнять сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Применение роботов и современных нанотехнологий в медицине и их значение.

    реферат , добавлен 12.01.2011

    Описание истории развития робототехники и применения ее в хирургических операциях на примере программно-управляемого автоматического манипулятора Да Винчи с инструментом Endo Wrist. Создание плавающей капсулы с камерой и эндолюминальной системы ARES.

    реферат , добавлен 07.06.2011

    Правильная и своевременная обработка рук как залог безопасности медицинского персонала и пациентов. Уровни обработки рук: бытовой, гигиенический, хирургический. Основные требования к антисептикам для рук. Европейский стандарт обработки рук EN-1500.

    презентация , добавлен 24.06.2014

    Применение в медицине микроскопических устройств на основе нанотехнологий. Создание микроустройств для работы внутри организма. Методы молекулярной биологии. Нанотехнологические сенсоры и анализаторы. Контейнеры для доставки лекарств и клеточной терапии.

    реферат , добавлен 08.03.2011

    Оказание первой медицинской помощи при несчастных случаях, бедствиях и авариях. Общие правила переноски и подъема пострадавших на носилках и без них при различны травматических повреждениях. Способы выноса пострадавших из очага бедствия или аварии.

    реферат , добавлен 27.02.2009

    Этиология, пато- и морфогенез рака прямой кишки. Маркеры онкогенеза, их прогностическая значимость. Основные критерии оценки результатов иммуногистихимического исследования и результаты состояния РПК у пациентов после радикального хирургического лечения.

    дипломная работа , добавлен 19.05.2013

    Общая характеристика и отличительные признаки различных методик обследования пациентов, используемых в современной медицине. Порядок и инструментарий для проведения обследования. Понятие и причины, разновидности одышки, направления ее исследования.

    реферат , добавлен 12.02.2013

    Разнообразие интересов и талантов Леонардо да Винчи. Проведение анатомических вскрытий художником, создание системы изображений органов и частей тела в поперечном сечении. Исследования в области сравнительной анатомии, содержание дневниковых записей.

    презентация , добавлен 28.10.2013

Научная робототехника – дисциплина, которая предполагает изучение всех особенностей создания роботов. На занятиях учащиеся узнают теоретические основы, историю и законы роботов, особенности их использования в реальной жизни.

Впервые слово «робот» применено чешским драматургом К. Чапеком в 1921 году. Он говорил о рабах, созданных для выполнения желаний человека. Слово robota переводится с чешского как «принудительное рабство».

Практически за 100 лет развития научной робототехники произошли серьезные изменения. Роботы из мира фантастики стали реальностью. Специальные машины применяются практически во всех областях промышленности, добычи полезных ископаемых, медицины. Само же направление стало увлекательным инструментом для получения новых знаний в разных отраслях технических наук, проектирования. У учеников появляется возможность реализовать себя в качестве проектировщиков, техников и даже артистов.

Роботы в современном мире

Активно развивается медицинская робототехника. Многие представляют себе робота в качестве внимательного, всегда вежливого, не устающего врача. Однако сегодня многие ученые говорят о том, что заменить человека техника не может. Она помогает справиться с рутинными задачами, например:

Регистрацией обратившихся за помощью;
- работы с электронными картами;
- предоставление справок.

Роботосекретарей уже создано довольно много. Применяются они в самых разных сферах жизнедеятельности человека. В рамках медицинской робототехники появились и специальные машины, оснащенные специальными камерами для перевозки медикаментов и документов. Такие устройства могут отвечать на вопросы, сопровождать клиентов до нужного места.

Наглядным примером стал Omnicell M5000. Он позволяет оптимизировать работу с медикаментами в стационарах. Машина формирует наборы лекарств для каждого пациента на заранее заданный срок. Это значительно снижает риск возникновения ошибки из-за человеческого фактора. Робот может создать около 50 наборов в час. У обычного медицинского персонала за 60 минут получается сделать только 4 набора.

Использование роботов в промышленности

Активно используется сегодня робототехника в промышленности. Есть три основных типа:

  1. Управляемые. Предполагают, что каждым действием управляет оператор.
  2. Автоматические и полуавтоматические. Работают строго по заданной программе.
  3. Автономные. Совершают последовательные действия без участия человека.

    К примерам можно отнести KUKA KR QUANTEC PA. Это один из самых продвинутых палетоукладчиков. Есть разновидность, которая может работать при очень низких температурах. Создан был специально для функционирования в больших морозильных камерах.

    Робототехника в промышленности представлена и многофункциональными устройствами. Например, Baxter имеет манипуляторы, которые способны выполнять все те же действия, что и рука человека. Интересным является тот факт, что машина может самостоятельно контролировать прилагаемые усилия.

    Stratasys Infinite-Build 3D Demonstrator – еще одна машина, которая является гибридом робота и 3D-принтера. Техника используется в авиационном и космическом производстве, поскольку может производить печать на горизонтальных и вертикальных поверхностях любого размера.

    Активно развивается робототехника в Японии. В этой стране были созданы сиделки RIBA и RIBA-II. Их главная задача заключается в переносе пациентов, которые не могут ходить самостоятельно. Машины помогают им садиться из кровати в кресло-коляску и наоборот. Роботы умеют наклоняться, а поверхность рук создана так, чтобы пациент чувствовал себя максимально комфортно.

    Интересным является изобретение ученых Техасского университета. Они наделили искусственный интеллект шизофренией. Для эксперимента применялся робот с нейронной сетью, повторяющей мозг человека. Машина не могла нормально запоминать, воспроизводить рассказы. В один момент он даже взял на себя ответственность за террористический акт.

    Были созданы специальные модели и для обычных людей. Например, робот-симулятор ребенка. Создан он был тоже в Японии. Такая машина может познакомить будущих родителей со всеми сложностями воспитания. Он умеет выражать эмоции, плакать, просить кушать и пр.

    Достижения в мире робототехники для школьников

    Сегодня кружок робототехники в школе можно найти во многих странах. Родители часто покупают различные устройства для привлечения интереса к науке. Это привело к тому, что на рынке появились игрушки, которые можно программировать на выполнение различных задач. Остановимся на самых интересных:

  4. Sphero 2. и Ollie. Предназначены для детей от 8 лет. Игрушку-робота практически невозможно сломать. Она не боится воды, умеет плавать. Управляется со смартфона или планшета.
  5. KIBO. Довольно простой по внешнему виду конструктор. Он позволяет научиться программировать. Работает следующим образом: сканирует отметки на деревянных кубиках. Каждая надпись обозначает определенное действие.
  6. LEGO Education WeDo. Робот, которого можно создать самостоятельно. В комплекте есть все необходимое для полноценной работы. Можно докупать дополнительные элементы для расширения возможностей машины.

    Обычно на кружках робототехники в школе предлагают самостоятельно собрать свое первое управляемое устройство. Это не только вызывает восторг у большинства детей, но и дает возможность получить новые знания.

    Робототехника для детей в Солнечногорске

    Сегодня количество кружков, на которых можно получить новые знания в самых продвинутых областях, впечатляет. Робототехника в Солнечногорске, например, привлекает как детей дошкольного возраста, так и подростков. Возможно, именно за ними в будущем будет настоящий прорыв в мире роботов. Педагоги следят за всеми новинками, постоянно обучаются сами. Это позволяет им и детям идти в ногу со временем.

    Робототехника в Солнечногорске, как и в других городах, больше имеет познавательную направленность. На сегодняшний день главная задача – заинтересовать детей всех возрастов, научить их применять теоретические знания на практике.

    Робототехника для детей в Солнечногорске предполагает небольшие группы, возможность получения индивидуальных консультаций и применение в работе полноценных конструкторов. Дополнительно дети осваивают работу со светодиодами, 3D-моделированием, пайкой. Обучение начинается всегда с основ сборки. По мере освоения материала даются основы программирования, конструирование.