Нарушения образования и выведения конечных продуктов белкового обмена. Ученым удалось вылечить эпилепсию в процессе исследования механизмов памяти

Последствия нарушения общего синтеза белка

Длительное и значительное понижение синтеза белка приводит к развитию дистрофических и атрофических нарушений в различных органах и тканях вследствие недостаточного обновления структурных белков. Замедляются процессы регенерации. В детском возрасте тормозятся рост, физическое и умственное разви-

тие. Снижается синтез различных ферментов и гормонов (СТГ, антидиуретический и тиреоидный гормоны, инсулин и др.), что приводит к эндокринопатиям, нарушению других видов обмена (углеводного, водно-солевого, основного). Понижается содержание белков в сыворотке крови в связи со снижением их синтеза в гепатоцитах. Вследствие этого в крови уменьшается онкотическое давление, что способствует развитию отеков. Уменьшается продукция антител и других защитных белков и, как следствие, снижается иммунологическая реактивность организма. В наиболее выраженной степени эти расстройства возникают в результате длительного нарушения усвоения белков пищи при различных хронических заболеваниях органов пищеварения, а также при длительном белковом голодании, особенно если оно сочетается с дефицитом жиров и углеводов. В последнем случае повышается использование белка в качестве источника энергии.

Причины и механизм нарушения синтеза отдельных белков. В большинстве случаев эти нарушения имеют наследственную природу. В основе их лежит отсутствие в клетках информационной РНК (иРНК), специфической матрицы для синтеза какого-либо определенного белка, или нарушение ее структуры вследствие изменения структуры гена, на котором она синтезируется. Генетические нарушения, например замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности.

К образованию аномальных белков могут привести отклонения от нормы в структуре иРНК, мутации транспортной РНК (тРНК), вследствие чего к ней присоединяется несоответствующая аминокислота, которая и будет включаться в полипептидную цепь при ее сборке (например, при образовании гемоглобина).

Процесс трансляции является сложным, совершающимся при участии ряда ферментов, и нарушение функции какого-либо из них может привести к тому, что та или другая иРНК не передаст закодированную в ней информацию.

Нарушение синтеза отдельных белков-ферментов или структурных белков лежит в основе различных наследственных болезней (гемоглобинозы, альбинизм, фенилкетонурия, галактоземия, гемофилия и многие другие - см. раздел 5.1). Нарушение какой-либо ферментативной функции чаще всего связано не с отсутствием соответствующего белка - фермента, а с образованием патологически измененного неактивного продукта.

Причины, механизм и последствия повышенного распада тканевых белков. Наряду с синтезом в клетках организма постоянно происходит деградация белков под действием протеиназ. Обновление белков за сутки у взрослого человека составляет 1-2% общего количества белка в организме и связано преимущественно с деградацией мышечных белков, при этом 75-80% освободившихся аминокислот вновь используется для синтеза.

Азотистый баланс - интегральный показатель общего уровня белкового обмена, это суточная разница между поступающим и выделяющимся из организма азотом,

У здорового взрослого человека процессы распада и синтеза белка уравновешены, т.е. имеется азотистое равновесие. При этом суточная деградация белка составляет 30-40 г.

Азотистый баланс может быть положительным или отрицательным.

Положительный азотистый баланс: поступление в организм азота превышает его выведение, т.е. синтез белка преобладает над его распадом. Отмечается при регенерации тканей, в период выздоровления после тяжелых болезней, при беременности, в детском возрасте, при гиперпродукции СТГ, при полицитемии.

При патологии распад белка может превалировать над синтезом и азота поступает в организм меньше, чем выделяется (отрицательный азотистый баланс).

Причинами отрицательного азотистого баланса являются: инфекционная лихорадка; обширные травмы, ожоги и воспалительные процессы; прогрессирующий злокачественный опухолевый рост, эндокринные заболевания (сахарный диабет, гипертиреоз, гиперкортицизм); тяжелый эмоциональный стресс; обезвоживание, белковое голодание, лучевая болезнь; гиповитаминозы А, С, В 1 , В 2 , В 6 , РР, дефицит фолиевой кислоты. В механизме усиленного распада белков при многих из перечисленных состояний лежит повышенная продукция катаболических гормонов.

Следствием отрицательного азотистого баланса являются дистрофические изменения в органах, похудание, в детском возрасте - задержка роста и умственного развития.

Тепловой шок развивающегося мозга и гены, детерминирующие эпилепсию

Н. Е. Чепурнова

Московский государственный университет им. М.В. Ломоносова

Этиология и патогенез фебрильных судорог

Каждый новый шаг в решении фундаментальных биологических проблем помогает понять вековые проблемы заболеваний человека, их природу и вновь обращает нас к наследcтвенным факторам. "Неисчерпаемая наследственная биохимическая гетерогенность не может не повлечь за собой, – писал В.П. Эфроимсон, – неисчерпаемую наследственную гетерогенность психическую..." . Это справедливо для выраженности неврологических и психических заболеваний.

Эпилепсия проявляется в популяции человечества в 2-4%, наибольшую опасность она представляет в детском возрасте. Фебрильные судороги (ФC) составляют до 85% всех судорожных синдромов, наблюдаемых у детей. Общее количество детей в возрасте от 6 месяцев до 6 лет, больных ФС, составляет от 2 до 5% (9% в Японии), наибольшее число таких детей наблюдается в Гуаме – 15%. Более половины приступов ФС отмечаются в течение второго года жизни ребенка, пик частоты приходится на возраст от 18 до 22 месяцев. Судороги могут провоцироваться заболеваниями, протекающими с температурой выше 39-41 ºС, но врачи всегда предполагали наличие скрытой генетической предрасположенности у ребенка к пароксизмальным состояниям, если повышение температуры вызывает ФС. Мальчики заболевают в четыре раза чаще, чем девочки. Высказаны предположения об аутосомальном доминантном наследовании, аутосомальном рецессивном наследовании ФС, но не исключается и полигенное или мультифакториальное наследование . Генетическая гетерогенность эпилепсии проявляется на разных уровнях. Она выявляется в разнообразии клинических черт фенотипа, наследуемых признаков (паттернов), первичных продуктов гена, среди которых могут оказаться факторы развития и дифференцировки нейронов, ферменты, белки-рецепторы, белки-каналы, наконец, продукты другого гена. Неодинаковы и нарушения генетического кода, при этом может быть вовлечено несколько локусов в разных хромосомах.

По данным национальной программы США (California Comprehensive Epilepsy Program), от 2 до 2,5 млн американцев страдают эпилепсией. За 10 лет исследований американских семей у больных эпилепсией определено шесть различных локусов в разных хромосомах. При картировании хромосом принято обозначать первой цифрой ее номер; буквами плечи p или q, последующими цифрами сегменты регионов (подробнее см. ). Выяснено, что за юношескую миоклоническую эпилепсию ответственны локусы в хромосомах 6p и 15q; за классическую юношескую эпилепсию с большими припадками и смешанную с абсансами в хромосоме 6p (абсансы – внезапно наступающие кратковременные выключения сознания продолжительностью 2-15 с). Два локуса определены для детской абсансной эпилепсии (пикнолепсии), протекающей с тяжелыми припадками, – в 8q24 и для переходящей в ювенильную миоклоническую эпилепсию – в 1p. У больных в итальянских семьях выявлены другие локусы: для идиопатической (от греч. idios – собственный; pathos – страдание; идиопатическая – первично возникающая без внешних причин) генерализованной эпилепсии – в хромосоме 3p, а для генерализованной эпилепсии с фебрильными судорогами и абсансами – также в хромосоме 8q24.

Ген, определяющий развитие ФС, оказался в других областях 8-й и 19-й хромосом, нежели ранее определенные ДНК-маркерами. Их положение указывает на связь ФС с другими генетически определяемыми формами эпилепсии.

Изучение семей с наследованием ФС определило генетический компонент и аутосомное доминированное наследование. В работах японских генетиков при обследовании 6706 детей в возрасте трех лет в провинции Фучу Токио с населением около 182 000 человек показано, что у 654 детей отмечались ФС. Новые интересные факты получены С. Берковичем в результате многолетних исследований семей в Австралии. Было открыто, что главный ген ФС расположен в 8q13-21 и связан с синтезом белка Na+-канала. Особенности иммунного статуса у детей египтян, перенесших ФС, позволили предположить, что генетически обусловленные ФС наблюдались у детей с антигеном HLA-B5, низким уровнем иммуноглобулина IgA и низким содержанием Т-лимфоцитов. Все это позволяет говорить об обратной связи: у детей была не только предрасположенность к ФС, но и повышенная чувствительность к острым инфекциям, протекающим с лихорадкой, которая становится физиологической причиной судорог. Сочетание синдромов внутриутробной энцефалопатии с наследственно-семейной отягощенностью по эпилепсии только усугубляет исход ФС. Поскольку главным условием возникновения ФС у ребенка является повышение температуры, следует рассмотреть гипертермию как фактор эпилептогенеза.

Роль центра терморегуляции гипоталамуса в инициации фебрильных судорог

Почему длительное повышение температуры так опасно для развивающегося мозга ребенка? Облегчение возникновения ФС определяется низким уровнем тормозного медиатора – гамма-аминомасляной кислоты (ГАМК) и отсутствием полноценных рецепторов к нему, а также снижением в мозгу по тем или иным причинам уровня АТФ, особенно под влиянием гипоксии. У ребенка повышается уровень продуктов перекисного окисления липидов, нарушается микроциркуляция мозга, гипертермия мозга сопровождается отеком. Все нейрохимические системы торможения нейронов, и прежде всего гипоталамических, незрелые. В мозгу еще только устанавливаются связи между клетками головного мозга, ответственными за постоянство температуры тела.

Центр регуляции температуры находится в переднем отделе гипоталамуса. Более трети нейронов этой области являются терморецепторами, к ним же по нервным путям поступает информация от периферических терморецепторов кожи и внутренних органов. Приблизительно треть этих клеток – тепловые рецепторы, они увеличивают частоту разрядов с повышением температуры крови (0,8 имп " с-1 " °С-1), менее 5% клеток – холодовые рецепторы. Недавно в опытах на изолированных срезах мозга показано, что повышение температуры омывающей крови изменяет скорость деполяризации нейронов, определяемой свойствами Na+-каналов мембраны, при этом одновременно уменьшаются межспайковые интервалы, что частично зависит от K+-каналов. В итоге частота разрядов клетки резко увеличивается. При неразвитости тормозных систем это приводит к гипервозбудимости, возникновению пароксизмальных возбуждений, охватывающих моторную кору, появлению судорог.

Теплопродукция и теплоотдача – два важных физиологических механизма сохранения температуры в оптимальном для организма интервале. Но именно эти периферические механизмы у ребенка также незрелы и не могут купировать нарастающую гипертермию.

Моделирование фебрильных судорог у новорожденных животных

Разработанные модели ФС на новорожденных животных – крысятах – помогли выявить уязвимые, критические периоды развития мозга, пороги температур, при которых наступают ФС, изучить отдаленные последствия ФС, изучить действие противосудорожных лекарств. Работая совместно с Пак Джин Кью в Тэджоне (Южная Корея), мы установили, что уникальные возможности для предотвращения или снижения тяжести ФС у крысят дает системное введение определенной комбинации гинзенозидов, биологически активных веществ, выделенных из корня женьшеня. Из всех методик, разработанных физиологами: эндогенная гипертермия, внешнее согревание воздухом, СВЧ-, инфракрасными лучами, мы выбрали простое нагревание лампой накаливания. По мере повышения температуры тела наблюдается постепенное развитие внешних признаков моторных судорог, тяжесть которых определяли по общепризнанной шкале П. Мареша и Г. Кубовой. Гипертермию прекращали при появлении у крысят тонико-клонических судорог с потерей позы, а при отсутствии ФС – по прошествии 15 мин. Для измерения инфракрасного излучения с интактной поверхности кожи животного применяли метод термовидения – инфракрасный детектор Inframetrics 522L.

Нейроэндокринная регуляция фебрильных судорог

В реакции мозга на гипертермию участвует нейрогормон аргинин-вазопрессин (АВП). В пользу этой гипотезы К. Питмана говорят следующие факты: у крыс линии Brattleboro с генетически обусловленным недостатком АВП и у пассивно иммунизированных к этому пептиду крыс судорожный ответ на повышенную температуру наступает при более высоких ее значениях, чем у животных с нормальным уровнем его синтеза. Электростимуляция нейронов, синтезирующих АВП, способствует прекращению лихорадки. С одной стороны, клинические данные свидетельствуют об увеличении уровня АВП в плазме крови у детей после судорожных припадков, с другой – перфузия АВП через прозрачную перегородку мозга у животных приводит к снижению повышенной температуры тела. Гипотеза позволяет говорить об открытии эндогенного антипиретика (от греч. pyretos – жар, лихорадка, pyretica – лекарственное средство, вызывающее лихорадку). Парадоксально, но оказалось, что функция антипиретика сочетается у нейрогормона АВП с проконвульсивным эффектом.

В наших экспериментах, выполненных с Соросовским студентом А.А. Пономаренко, были получены новые факты о проэпилептическом влиянии АВП на примере ФС в раннем постнатальном онтогенезе мозга крысят. АВП действительно значимо укорачивает время появления генерализованных, гипертермически вызываемых судорог на 3-й и 5-й дни после рождения, отчетливо увеличивается их продолжительность по сравнению с таковыми у животных контрольной группы. На 9-й постнатальный день при сочетании гипертермии и введения АВП в опытной группе фебрильный эпилептический статус продолжительностью более 2 ч закончился гибелью всех крысят, получавших АВП. Такие события, приводящие к летальному исходу, не могут не контролироваться на гормональном и нейрохимическом уровнях. Необходимо было выяснить, какие регуляторы усугубили действие высокой температуры.

АВП – это антидиуретический гормон, который сохраняет воду в организме, поэтому его секреция зависит от водно-солевого баланса, но, кроме того, его выделение управляется недавно открытым пептидом, активирующим аденилатциклазу гипофиза (сокращенно по первым латинским буквам – РАСАР). Эффект последнего не зависит от повышения или понижения концентрации солей в крови.Только в 1999 г. Номурой было доказано, что РАСАР стимулирует транскрипцию гена АВП в клетках тех ядер гипоталамуса, которые ответственны за регуляцию водно-солевого обмена и питьевое поведение. Наши опыты показали, что при введении РАСАР крысятам он может действовать через секрецию АВП в момент гипертермии (см. рис. 2). Были обнаружены разнонаправленные изменения экспериментального фебрильного судорожного приступа у крысят после применения высоких (0,1 мкг на крысу) и низких (0,01 мкг на крысу) доз РАСАР. Эффект зависит и от возраста крысенка, то есть зрелости гипоталамуса.

Итак, АВП сочетает функции эндогенного антипиретического агента и индуктора судорожной моторной реакции при быстром повышении температуры тела, а один из регуляторов его секреции – РАСАР – может ускорять эти процессы. Представляется вероятным прямое действие АВП и РАСАР на мембраны нервных клеток через рецепторы к ним (рис. 3). Но нельзя исключить и другие пути регуляции, например через рилизинг-фактор гипоталамуса – кортиколиберин. Клетки, синтезирующие РАСАР, посылают свои аксоны к телам нейросекреторных клеток гипоталамуса, синтезирующих кортиколиберин. Выделение кортиколиберина в кровь провоцирует эпилептические припадки.

Внутриклеточная защита нейронов – белки теплового шока

В некоторых случаях генетически детерминированной нейропатологии молекулярные события являются вторичными . Не составляют исключения и фебрильные судороги. Значительное превышение температуры тела приводит к экспрессии генов огромного количества белков, получивших название "белки теплового шока" (БТШ). Транскрипция БТШ начинается спустя несколько минут после нагревания. Эта реакция всегда рассматривалась как защитная против летального исхода в результате теплового шока. Новейшие подтверждения этой теории получены в Институте рака в Копенгагене. В культуре ткани показано, что сильный тепловой стресс вызывает апоптоз (от греч. apoptosis – опадание листьев или лепестков с цветка – генетически

запрограммированная смерть одной или нескольких клеток, подробнее см. ), но стресс средней силы (а гипертермию относят к стрессу средней силы) благодаря сохранению способности клетки к синтезу БТШ защищает их и от апоптоза и от некроза. Это свойство позволит использовать БТШ in vivo (в клинике) для защиты сердца и мозга от ишемии, легких от сепсиса, более того, они могут применяться в антираковой терапии. БТШ могут быть применены и при срочной защите мозга при возникновении ФС у детей.

Синтез БТШ является неспецифической стрессорной реакцией. В клетках и тканях организма БТШ индуцируются многими факторами помимо гипертермии, а именно: ишемией, перекисным окислением, действием цитокинов (цитокины – эндогенные белковые регуляторы, принимающие участие в наиболее эффективном проявлении иммунного ответа), мышечным стрессом, депривацией глюкозы, нарушениями уровня Са2 + и pH. Голландские физиологи в Неймегене недавно показали, что защитные реакции в виде экспрессии БТШ наблюдаются у больных паркинсонизмом в поздней стадии болезни с развитием деменции и при болезни Альцгеймера. Обнаружена прямая корреляция между экспрессией БТШ и тяжестью протекания болезни Альцгеймера, особенно при поражении гиппокампа.

Таким образом, при ФС происходит экспрессия генов БТШ, но такая неспецифическая защита не всегда достаточна для сохранения тормозных клеток, особенно в гиппокампе. Поэтому существует угроза отдаленных последствий в виде мезиального гиппокампального склероза, вызывающего височную эпилепсию. Если при этом генетическая предрасположенность к височной эпилепсии складывается с предрасположенностью по ФС, прогноз болезни особенно тяжел.

Вопрос о последствиях ФС в виде развития височной эпилепсии важен для последующей судьбы ребенка. Основная дискуссия в клинике развернулась по вопросу, погибают ли клетки в результате ФС, или они погибают по другим причинам (например, в результате нарушения защитного синтеза БТШ, развития апоптоза). Молекулярно-биологические исследования в лаборатории К. Уастерлайна в Лос-Анджелесе показали, что судорожные процессы в развивающемся мозгу задерживают его развитие, и в частности рост аксонов, так как судорога нарушает экспрессию гена маркера конуса нарастания аксона – белка GAP-43.

Хирурги, оперирующие височную область для лечения височной эпилепсии, отмечают, что многие их пациенты имели в детстве эпизоды ФС. Однако это ретроспективная оценка. Новейшие исследования в Канаде показали, что положительная семейная история и ФС являются неразрывными факторами развития височной эпилепсии. Можно предположить, что, чем продолжительнее были приступы ФС, тем дольше генерализованная судорога охватывала мозг ребенка и тем больше нервных клеток погибало. Как ни мал процент таких детей (только у 1,5-4,6% детей с ФС в последующем развивается эпилепсия), они на всю жизнь будут обречены на страдания и лечение по причине гибели гиппокампальных тормозных клеток вследствие гипертермии.

Генетика калиевых и натриевых каналов и эпилепсия

Причинами пароксизмальных состояний могут быть изменения строения и функций Na+-, Ca2 +-, Cl--, K+-каналов. Канал – одна молекула белка, она характеризуется строгой селективностью в отношении вида пропускаемого иона, имеет воротное устройство, которое управляется потенциалом на мембране (рис. 4, а). Возникновение и проведение нервных импульсов зависит от состояния ионных каналов. Последние десять лет изучаются наследственные заболевания нервной системы, получившие новое название – "каналопатия". Нарушения связывают с локализацией генов в хромосомах: 19q13.1 (Na+-канал), 12р13, 20q13.3, 8q24 (К+-канал), 7q (Cl--канал). Раскрытие молекулярной структуры каналов помогло понять особенности наследования эпилепсии.

Нервный импульс есть следствие перемещения через мембранные каналы Na+ в клетку, а K+ из клетки. Входящие по ионному градиенту положительно заряженные ионы Na+ создают деполяризующий мембрану ток, уменьшающий мембранный потенциал до нуля, а затем перезаряжающий мембрану до + 50 мВ. Так как состояние этих каналов зависит от знака заряда на мембране, положительный потенциал мембраны способствует инактивации натриевых каналов и открытию калиевых каналов. Теперь выходящие из клетки ионы K+ создают ток, перезаряжающий мембрану и восстанавливающий ее потенциал покоя. Нарушения Na+-каналов приводят к изменению деполяризации клетки, а нарушения K+-каналов – к нарушению поляризации. Открытие в 1980 г. Д. Брауном и П. Адамсом низкопороговых М-токов через неинактивирующиеся KCNQ2/KCNQ3-калиевые каналы помогло понять природу предрасположенности к эпилепсии. М-токи изменяют возбудимость клетки и предотвращают возникновение эпилептической активности нейрона. Нарушение генов KCNQ2/KCNQ3-калиевых каналов ведет к заболеванию "семейные неонатальные судороги", возникающему у ребенка на 2-3-й дни после рождения. Недавно синтезированное лекарство ретигабин помогает больным эпилепсией за счет того, что открывает KCNQ2/KCNQ3-каналы в мембранах нейронов. Это пример того, как фундаментальное изучение каналов помогает синтезировать новые лекарства против каналопатий.

Мы уже упоминали два локуса, ответственные за ФС. Новые исследования показали вовлеченность еще одной области 19q13.1, ответственной за синтез b1-субъединицы Na+-канала. Мутации в этой области определяют возникновение фебрильных судорог в сочетании с генерализованной эпилепсией. Na+-канал состоит из одной a- (образующей пору) и двух b-субъединиц, последние модулируют процесс инактивации канала, то есть работу a-субъединицы (см. рис. 4, а). Влияние на воротную систему a-субъединицы зависит от структуры экстраклеточного домена b1-субъединицы. Отвечающий за b1-субъединицу ген SCN1B был обоснованно выбран для исследований, поскольку действие основных противосудорожных средств фенитоина и карбамазепина заключается в инактивации натриевых каналов. Более того, уже было извеcтно, что мутации этого гена в мышечной клетке приводят к пароксизмальным возбуждениям (миотония, периодический паралич), а в сердечных клетках – к увеличению интервала QT в ЭКГ. Именно в области дисульфидного мостика происходит мутация, приводящая к его разрушению и изменению структуры экстраклеточного домена b1 (рис. 4, б). Перенос гена в ооцит Xenopus laevis и индукция синтеза дефектного канала позволили электрофизиологически исследовать мутантный канал и доказать, что он инактивируется медленнее (см. рис. 4, б). Очень важно, что у таких больных нет изменений в клетках сердечной мышцы и скелетной мускулатуре, а мутация наблюдается только для нейронной изоформы Na+-каналов. Данная мутация была выявлена в результате исследований австралийских генетиков. Было проведено изучение шести генераций семей (378 человек), проживающих в основном в Тасмании и имеющих семейные истории по ФС в сочетании с генерализованной эпилепсией. Эти работы открыли новый путь для изучения идиопатических форм эпилепсии, которые могут быть результатом еще неизвестных форм каналопатий.

Не менее важны нарушения синтеза белков-рецепторов к медиаторам. Аутосомное доминантное наследование ночной лобной эпилепсии связывают с хромосомой 20 (локализация гена в q13.2 – q13.3), а проявление этой формы эпилепсии – с мутацией S248F генетического кода a4-субъединицы Н-холинорецептора. Изменению подвергается "стенка" белка-канала, его трансмембранный 2-й сегмент, в котором аминокислота серин замещена на фенилаланин. Были обнаружены и нарушения в регуляции экспрессии гена b-субъединицы белка NMDA-рецептора к возбуждающему медиатору – глутамату, выброс которого клетками мозга инициирует эпилептический приступ. Если в процессе редактирования иРНК произойдет замена глютамина на аргинин в мембранном домене, возникшее нарушение альтернативного сплайсинга (подробнее см. ) уже достаточно для существенного повышения возбудимости нейронов гиппокампа.

Наследование "эпилепсии горячей воды"

В одном из постерных докладов индийских неврологов на конгрессе по эпилепсии в Осло в 1993 г. мы неожиданно увидели что-то напоминающее средневековую китайскую казнь: неподвижной крысе капали на голову горячую воду, пока не наступал тяжелый эпилептический припадок. Непредвзятое изучение этого доклада показало, что создаваемые мучения крысы вызваны желанием понять тяжелый недуг, который именно в многонаселенной Индии охватывает почти 7% всех больных эпилепсией и составляет 60 случаев на 100 тыс. заболеваний. Этот феномен близок гипертермически вызываемым судорогам, рассмотренным выше.

Случай появления эпилептического припадка при мытье головы горячей водой впервые был описан в Новой Зеландии в 1945 г. Больной человек при мытье головы (а в традициях индусов эта процедура повторяется раз в 3-15 дней) горячей водой при температуре 45-50°С испытывает ауру, галлюцинации, заканчивающиеся парциальными или генерализованными судорогами с потерей сознания (мужчины чаще, чем женщины в 2-2,5 раза). Есть возможность измерить наиболее близко температуру мозга, введя специальный электротермометр внутрь слухового канала близко к барабанной перепонке. Оказалось, что у больных температура мозга в начале мытья головы очень быстро поднимается (каждые 2 мин на 2-3°С) и очень медленно

снижается после прекращения мытья. Их мозг медленно (10-12 мин) "остывает", тогда как у здоровых добровольцев, участвующих в таких экспериментах, мозг "остывает" практически мгновенно после прекращения купания. Естественно возник вопрос: какие отклонения в терморегуляции являются причиной болезни и не определены ли они генетически? Истинную причину раскрыли исследования близнецов и данные семейного анализа. Оказалось, что в Индии до 23% всех случаев "эпилепсия горячей воды" повторяется в следующих поколениях.

ФС, как мы уже говорили, являются следствием аутосомального доминантного наследования в одном локусе хромосомы – 8q13-21. При "эпилепсии горячей воды" изменения одного локуса недостаточны для объяснения всего комплекса болезни. Появление больного фенотипа (обоего пола) может быть связано с аутосомальной рецессивной мутацией, ведущей к этому заболеванию. Наблюдения за пятью поколениями нескольких семей в Индии показало, что болезнь возникает у детей близкородственных родителей, например в браке между племянниками. В южной Индии сохранились традиции таких близкородственных браков, чем, по-видимому, и можно объяснить высокий процент больных по сравнению с другими штатами.

Заключение

Нейрогенетический подход позволил окончательно установить генетическую предрасположенность к фебрильным судорогам. Вот отчего не у каждого ребенка, длительно находящегося при очень высокой температуре (40-41°С), возникают моторные судороги. Главный ген ФС связан с мембранными механизмами возбудимости нейрона, с контролем синтеза белка-канала, через который проходят ионы Na+. Создается деполяризационное возбуждение нейрона. Неудивительно, что "гены" этих нарушений, относящиеся к ФС, несколько "стоят в стороне" от специфических генов, ответственных за другие формы эпилепсии. Внешней причиной ФС является перегревание, возникающее под влиянием либо эндогенных пиретиков (например, при инфекционном заболевании), либо действительно под влиянием повышения температуры среды. В ответ на гипертермию первой включается физиологическая оборона – функциональная система поддержания температуры в оптимальном диапазоне. Она направлена на снижение температуры тела. В вегетативные центры идут нервные сигналы – команды, направленные на отдачу тепла и снижение теплопродукции. Клетки гипоталамуса, имея возможность измерять температуру крови, сами по механизмам обратной связи следят за результатами этих команд. Так как они являются нейросекреторными и выделяют либерины и статины, они могут одновременно запускать сложные биохимические изменения за счет регуляции секреции гормонов гипофиза. К вегетативным регуляциям практически одновременно подключаются эндокринные механизмы и поведенческие защитные реакции. Выброс синаптического АВП как антипиретического вещества приводит к усилению судорожного ответа. Секреция АВП, в свою очередь, усиливается нейропептидом РАСАР, активизирующим энергетику клеток гипофиза. К сожалению, эта защитная попытка снизить температуру тела заканчивается провокацией судорог. Генетическая предрасположенность, низкий судорожный порог приводят к необратимому развитию событий. Возникает пароксизмальная патологическая судорожная активность нейронов сначала в гиппокампе, миндалине, ассоциативных отделах коры, а затем и в моторной коре. При всех видах судорог основной причиной остается нарушение соотношения выделения возбуждающего (глутамат) и тормозного (ГАМК) медиаторов. Это нарушение является предпусковым механизмом. Неограничиваемое в нервных сетях возбуждение охватывает отделы мозга, ответственные за тонус и движения, и приводит к судорогам. Перед этим происходит потеря сознания, так как патологическое возбуждение охватывает структуры ствола мозга и таламуса. Конечно, мозг обладает и другими защитными механизмами, это компенсаторная экспрессия ранних онкогенов (c-fos, c-jun), накопление цАМФ, секреция тиролиберина, длительное выделение тормозного медиатора. Однако требует дальнейшего исследования вопрос, почему при генетической предрасположенности к ФС эти механизмы неэффективны.


Вернуться к номеру

Эпилепсия при врожденных нарушениях метаболизма у детей /Epilepsy in inborn errors of metabolism in children/

Авторы: Николь И. ВОЛЬФ, Томас БАСТ, Отдел детской неврологии, университетская детская больница, Хейдельберг, Германия; Роберт СУРТЕС, Неврологическое научное объединение, Институт детского здоровья, Университетский колледж, Лондон, Великобритания

Резюме

Хотя врожденные нарушения метаболизма встречаются достаточно редко, чтобы их можно было рассматривать как причину развития эпилепсии, приступы являются частыми симптомами метаболических нарушений. При некоторых таких нарушениях эпилепсия откликается на специфическое лечение диетой или добавками. Однако в большинстве случаев такое лечение не дает эффекта, и необходимо назначать общепринятую противоэпилептическую терапию, которая тоже часто бывает неэффективной. Редко типы приступов являются специфичными для тех или иных нарушений метаболизма, и на ЭЭГ они обычно не регистрируются. Для того чтобы поставить диагноз, нужно принимать во внимание другие симптомы и синдромы, а также в некоторых случаях и дополнительные методы обследования. Мы даем обзор наиболее важных симптомов эпилепсии, обусловленной врожденными нарушениями метаболизма, памяти, интоксикациями и нарушениями нейротрансмиттерных систем. Также мы рассматриваем витаминчувствительную эпилепсию и множество других нарушений метаболизма, возможно сходных по патогенезу, а также важность их симптомов для диагностики и лечения.


Ключевые слова

врожденные нарушения метаболизма, нарушения памяти, нейротрансмиттеры, витаминчувствительная эпилепсия, эпилепсия.

Приступы — общий симптом для большого количества нарушений метаболизма, встречающихся в периоде новорожденности и в детском возрасте. Иногда приступы возникают только до тех пор, пока не назначено адекватное лечение, или же являются следствием острого декомпенсированного нарушения метаболизма, такого как, например, гипераммониемия или гипогликемия. В других случаях приступы являются основным проявлением заболевания и могут привести к медикаментозно-резистентной эпилепсии, как, например, при одном из синдромов дефицита креатинина и дефицита гуанидинацетатметилтрансферазы (ГАМТ). В некоторых случаях метаболических нарушений эпилепсию можно предупредить ранним назначением индивидуально подобранного «метаболического» лечения, которое стали применять после скринингового обследования новорожденных, страдающих фенилкетонурией (ФКУ) или дефицитом биотинидазы, в некоторых странах. При некоторых расстройствах, таких как глютеиновая ацидурия типа 1 (ГА 1), «метаболическая» терапия должна назначаться совместно с общепринятыми противоэпилептическими препаратами; однако при многих нарушениях метаболизма единственным средством для нивелирования приступов является монотерапия противоэпилептическими препаратами.

Эпилепсию при врожденных нарушениях метаболизма можно классифицировать по-разному. Одним из правильных вариантов является использование патогенетических механизмов для классификации: приступы могут быть обусловлены недостатком энергозатрат, интоксикациями, нарушениями памяти, повреждениями нейротрансмиттерных систем со случаями возбуждения или отсутствия торможения или могут быть связаны с мальформациями сосудов мозга (табл. 1). В других классификациях принимаются во внимание клинические проявления с акцентом на семиотику приступов, эпилептические синдромы и их проявления на ЭЭГ (табл. 2) или возраст, в котором случился дебют заболевания (табл. 3). Упорядочить эти виды эпилепсий означает определить те, которые поддаются и не поддаются такому же лечению, как и метаболические нарушения (табл. 4). В этом обзоре мы сделаем акцент на патогенезе и его роль в диагностике и лечении.

Эпилепсия, обусловленная врожденными нарушениями энергетического метаболизма

Митохондриальные нарушения

Митохондриальные нарушения часто сочетаются с эпилепсией, хотя точных данных в этой сфере мало, есть только несколько публикаций по этому поводу. В периоде новорожденности и детском возрасте эпилепсия выявляется в 20-60% случаев всех митохондриальных нарушений. В общей подгруппе, при синдроме Лейга, эпилепсия выявляется у половины всех пациентов. Согласно нашему опыту, эпилепсия — это общее заболевание с ранним началом и выраженной задержкой психомоторного развития, которая реже встречается при более легком течении заболевания, и при котором есть предоминантные белые включения на МРТ. Все приступы проявляются клинически.

Снижение продукции АТФ, главного биохимического последователя нарушенной дыхательной цепочки, возможно, вызовет неустойчивый мембранный потенциал и судорожную готовность нервной системы, потому что около 40% нейронов нуждаются в Na-К-АТФазе в процессе продукции АТФ и для сохранения мембранного потенциала. Одна из мутаций митохондриальной ДНК (мтДНК) обусловливает миоклоническую эпилепсию с прерывистыми красными волнами (МЭПКВ), с поврежденным кальциевым обменом, ведущим к повышенной судорожной готовности. Другой возможный механизм в настоящее время обсуждается, была показана важность митохондриального глютамата, который обусловливает раннюю миоклоническую энцефалопатию (РМЭ), которая может быть также обусловлена дисбалансом возбуждающих нейротрансмиттеров. Одно из первых митохондриальных нарушений, которое было описано, МЭПКВ, обусловлено мутацией в митохондриальной тРНК для лизина, присутствующей во второй декаде или позже как прогрессирующая миоклоническая эпилепсия с типичными изменениями на ЭЭГ — высокоамплитудными соматосенсорными потенциалами и фотосенситивностью. Клинически у пациентов бывают корковые миоклонусы, так же как и другие виды припадков. Другое митохондриальное нарушение, обусловленное мутацией митохондриальной тРНК для лейцина, митохондриальная энцефалопатия с лактат-ацидозом и инсультоподобными эпизодами (МЭЛИЭ), также часто приводит к приступам, особенно во время острых инсультоподобных эпизодов, когда возникают в вовлеченных областях коры фокальные приступы (рис. 1), приводящие к фокальному эпистатусу. Эта выраженная эпилептическая активность также ответственна за распространение повреждения, которое отмечается при некоторых острых эпизодах.

При начале митохондриальной энцефалопатии в периоде новорожденности или в детском возрасте миоклонические припадки частые, иногда с редкими единичными клиническими проявлениями (тремор век) и глубокой умственной отсталостью. ЭЭГ-паттерны колеблются от подавляющих вспышек до нерегулярных полиспайк-волновых пароксизмов во время миоклонуса. Однако могут иметь место и другие типы приступов — тонические, тонико-клонические, парциальные, гипо- и гипермоторные приступы или инфантильные спазмы. В одном исследовании выявлено, что 8% всех детей с инфантильными спазмами имеют митохондриальные нарушения. Эпистатус также наблюдался с судорогами или без них. Продолжительная парциальная эпилепсия, такая как фокальный эпистатус, часто встречается при болезни Альперса, некоторые случаи которой обусловлены мутацией в митохондриальной ДНК-полимеразе-гамма, вызванной митохондриальной деплецией. Болезнь Альперса должна быть заподозрена у детей с этим симптомом и должна дифференцироваться с энцефалитом Рамуссена.

Бессудорожный эпистатус или развитие гипоаритмии могут привести к постепенно развертывающейся деменции, которая может быть ошибочной при неизменном и не поддающемся лечению прогрессировании основного заболевания, однако они должны быть пролечены.

Нарушения метаболизма креатина

Нарушения метаболизма креатина включают в себя три различных дефекта: нарушение транспорта креатина в головной мозг из-за нарушения сцепленного транспортера креатина, нарушение синтеза креатина при дефектах ГАМТ (гуанидинацетатметилтрансфераза) и АГАТ (аргининглицин-амидинтрансфераза). Только дефицит ГАМТ постоянно ассоциируется с эпилепсией, которая резистентна к общепринятому лечению (рис. 2). Назначение добавок с креатином часто приводит к улучшению состояния. Однако у некоторых пациентов снижение токсических составляющих гуанидинацетата посредством ограничения употребления аргинина и добавками, содержащими орнитин, позволило достичь возможности контролировать эпилепсию. К тому же профилактическое лечение дает возможность предотвратить появление неврологических симптомов. Выделяют много типов приступов, они разнообразны. Для новорожденных характерен синдром Веста с атипичными абсансами, астатическими и генерализованными тонико-клоническими судорогами, с последующей общей генерализацией. Подобные находки могут быть нормой даже у взрослых пациентов, но у некоторых пациентов выявляется патологический сигнал с базальных ганглиев. Диагноз дефицита ГАМТ может быть сомнительным при биохимическом выявлении повышения экскреции с мочой составляющих гуанидина; все три нарушения допускаются, когда при протонной магнитно-резонансной спектроскопии головного мозга или СМПС выявляется отсутствие свободного креатина или креатинфосфата.

Дефицит ГЛУТ-1

Нарушение транспорта глюкозы в мозг через кровь обусловлено мутацией доминантного гена транспортера глюкозы 1 (ГЛУТ-1). Обычно происходит мутация de novo, хотя в некоторых семьях описывается аутосомно-доминирующее наследование. Клинические проявления медикаментозно-резистентной эпилепсии начинаются на первом году жизни и дополняются развитием микроцефалии и нарушениями интеллекта. Частой находкой является атаксия, а также случаются двигательные расстройства, такие как дистония. Симптомы могут развиваться стремительно, на ЭЭГ могут выявляться повышенные генерализованные или локальные эпилептиформные изменения, регрессирующие после приема пищи. Церебральная визуализация в норме. Этот диагноз следует подозревать, если обнаружен сниженный уровень глюкозы в крови (< 0,46). Диагноз должен быть подтвержден исследованием транспорта глюкозы через мембрану эритроцита (эритроциты переносят также транспортер глюкозы) и анализом генных мутаций. Лечение целесообразно и включает в себя кетогенную диету, так как кетоновые тела являются альтернативной энергетических субстратов для мозга. Различные антиконвульсанты, особенно фенобарбитал, хлоргидрат и диазепам, могут в дальнейшем снижать ГЛУТ-1 и не должны использоваться при этом заболевании.

Гипогликемия

Гипогликемия — частое и легко поддающееся коррекции метаболическое нарушение, приводящее к приступам, поэтому должна исключаться у всех пациентов с приступами. Пролонгированные приступы, вызванные гипогликемией, могут вызвать склероз гиппокампа и впоследствии эпилепсию теменной доли; у новорожденных доминирует поражение височной доли. Гипогликемия также может обусловить определенные метаболические заболевания, например дефекты глюконеогенеза, поэтому необходимо проводить дополнительные обследования. Каждому ребенку с гипогликемией необходимо назначать анализы глюкозы крови, бета-гидроксибутирата, аминокислот, ацилкарнитина, аммония, инсулина, гормона роста, кортизола, кетоновых тел в мозге, органических кислот.

Нарушения функции нервной системы, вызванные нарушением памяти

Многие нарушения памяти ассоциированы с эпилепсией и тяжело поддаются лечению. Эпилепсия — ведущий симптом болезни Тая — Сачса с миоклонусом, атипичными абсансами и двигательными припадками.

Сиалидоз 1 типа приводит к развитию прогрессирующей миоклонической эпилепсии, характерным симптомом является ретинальный симптом «вишневой косточки». При различных нейрональных сероидных липофусцинозах (НСЛ, болезнь Баттена) эпилепсия встречается в большинстве случаев. При инфантильных формах (НСЛ-1) приступы начинаются и заканчиваются на первом году жизни и проявляются в виде миоклонических, атопических и тонико-клонических судорог. На ЭЭГ регистрируется ранняя глубокая депрессия. Диагноз подтверждается быстро прогрессирующей деменцией и развитием комплекса двигательных расстройств почти сразу после развития эпилепсии. На МРТ при НСЛ выявляется атрофия коры, мозжечка и белого вещества и вторичный патологический сигнал с белого вещества (рис. 3). Электроретинограммы сильно разреженные, а вызванные потенциалы исчезают быстро. Более легкие варианты похожи на поздно начинающиеся ювенильные формы заболевания.

Клинические проявления поздних инфантильных форм (НСЛ-2) обычно возникают на втором году жизни. Развивается преходящее замедление функции речи, но это развитие приступов заставило проводить дальнейшие исследования. Приступы могут быть генерализованными, тонико-клоническими, атоническими и миоклоническими; у детей может быть клиника миоклонико-астатической эпилепсии. На ЭЭГ выявляются спайки с медленной фотостимуляцией (рис. 4). Выявляются высокоамплитудные потенциалы со зрительно вызванным и соматосенсорным ответом. Приступы часто резистентны к лечению. Ранним клиническим диагностическим симптомом является наличие активных миоклонусов, которые могут быть ошибочно приняты за мозжечковую атаксию.

Диагностика НСЛ-1 и НСЛ-2 в настоящее время основана на определении активности ферментов, таких как пальмитеил-протеин-тиоэстераза (НСЛ-1) или трипептидил-пептидаза (НСЛ-2), в каплях крови или лейкоцитах или при анализах генных мутаций (НСЛ-1, НСЛ-2, и при поздних инфантильных вариантах СЛН-5, СЛН-6, СЛН-8). Ювенильная форма (НСЛ-3) также вызывает развитие эпилепсии, хотя она развивается не сразу и не является одним из ранних клинических симптомов.

Токсические эффекты

Нарушение цикла мочевины

Во время раннего развития гипераммониемии, перед тем как наступает глубокая кома, часто развиваются судороги, особенно у новорожденных. При хорошем контроле метаболизма эпилепсия — редкий симптом при таких нарушениях.

Нарушения обмена аминокислот

При нелеченой фенилкетонурии эпилепсия развивается приблизительно у четверти или половины всех пациентов. Синдром Веста с гипсаритмией и инфантильными судорогами является наиболее частым синдромом у новорожденных, который полностью регрессирует при назначении симптоматической терапии. Судороги могут сопровождаться болезнью «кленового сиропа» в неонатальном периоде; на ЭЭГ выявляется «гребнеподобный» ритм, сходный с ритмом в центральных областях мозга. При назначении адекватной диеты эпилепсия не развивается. При некоторых редких нарушениях обмена аминокислот эпилепсия может быть одним из главных симптомов.

Нарушения обмена органических кислот

Различные органические ацидурии могут приводить к приступам или эпизодам острой декомпенсации. Наиболее важными являются метилмалоновая ацидемия и пропионовая ацидемия. При адекватном лечении приступы редки, и они отражают персистирующее поражение мозга. При глютаровой ацидурии 1 типа приступы могут развиваться в остром случае, но они проходят после начала адекватного лечения. При дефиците 2-метил-3-гидроксибутират-СоА-дегидрогеназы, который недавно описан как врожденное нарушение кислоты, отвечающей за брахиоцефальное ожирение и нарушение обмена изолейцина, выраженная эпилепсия проявляется часто.

Нарушения пуринового и пиримидинового обменов

При дефиците аденилсукцината, чьи эффекты de novo вызывают синтез пуринов, эпилепсия часто развивается на первом году жизни или в неонатальном периоде. У пациентов дополнительно обнаруживаются выраженные психомоторные нарушения и аутизм. Модифицированный тест Браттона — Маршалла используется для исследования мочи. Нет адекватного лечения этого заболевания, поэтому прогноз в большинстве случаев неблагоприятный. Также приступы развиваются у половины из всех пациентов с дефицитом дигидропиримидин дегидрогеназы.

Нарушения нейротрансмиттерных систем

Некетотическая гипергликемия

Обычно это нарушение недостаточного расщепления глицина проявляется рано, в неонатальном периоде, летаргией, гипотонией, икотой (которая обнаруживается до рождения), офтальмоплегией и вегетативными нарушениями. При усугублении комы развиваются апноэ и частые фокальные миоклонические судорожные подергивания. В течение последующих 5 месяцев (обычно более чем через 3) развивается тяжелая, трудно поддающаяся лечению эпилепсия с миоклоническими судорожными припадками, в большинстве случаев включающая в себя инфантильные спазмы или парциальные моторные припадки. Развитие тяжелой задержки умственного развития и тетраплегии также доказано. В первые дни и недели на ЭЭГ выявляется нормальная фоновая активность, но появляются участки эпилептических острых волн (так называемые вспышки угнетения), сменяющиеся высокоамплитудной медленной активностью и затем гипсаритмией в течение 3 месяцев, в случае если новорожденный выживает. Диагностика базируется на высокой концентрации глицина во всех жидкостях тела и ликворе (> 0,08), что подтверждается сниженной активностью печеночной системы расщепления глицина. На МРТ может быть нормальная картина или агенезия или гипоплазия мозолистого тела. Глицин — это один из крупных ингибиторов нейротрансмиттеров в головном и спинном мозге. Избыточное угнетение структур головного и спинного мозга дает в клинике заболевания появление первых симптомов. Однако глицин также может быть коантагонистом экзотоксического глютаматного НМДА-рецептора. В физиологических условиях коантагонист размещается на НМДА-рецепторе не полностью, и его связывание является обязательным условием для прохождения иона через рецептор. Предполагается, что избыток глицина насыщает коантагонист-связывающий участок НМДА-рецептора, вызывая избыточное возбуждение нейротрансмиссии и постсинаптической токсичности. Возбуждающее токсическое действие избыточно активного НМДА-рецептора является, очевидно, причиной эпилепсии и частично — тетраплегии и задержки умственного развития. Специфическое лечение нецелесообразно, хотя снижение уровня глицина назначением бензоата натрия обеспечивает выживаемость. У некоторых пациентов представлены терапевтические испытания НМДА-антагонистов с некоторыми проявлениями на ЭЭГ и частыми приступами. Тяжелая эпилепсия у выживших пациентов, как правило, лечится общепринятыми противоэпилептическими средствами. Вальпроевая кислота не используется теоретически, так как она ингибирует печеночную систему расщепления глицина.

Нарушения метаболизма ГАМК

Дефицит ГАМК-трансаминазы — довольно редкая патология, описанная только у 3 пациентов. Судороги отмечаются с рождения. Уровень ГАМК в ЦСЖ и плазме при этом повышается. До взрослого возраста дожили только 2 пациента. Пока нет схемы лечения этого заболевания. Дефицит сукцинат-полуальдегид-дегидрогеназы вызывает тяжелую задержку умственного развития. Почти у половины пациентов развиваются эпилепсия и другие неврологические симптомы, в основном атаксия. Биохимический признак — накопление в жидкостях организма 4-гидрооксибутирата. Противоэпилептический препарат вагабатрин, который необратимо ингибирует ГАМК-трансаминазу, эффективен у многих пациентов, но у некоторых может вызвать ухудшение состояния.

Мальформации в головном мозге

Среди пероксисомных нарушений тяжелый синдром Зельвегера характеризуется мальформациями в коре головного мозга. Полимикрогирия фронтальной и оперкулярной областей встречается часто, и пахигирия также иногда встречается. Типичными являются врожденные кисты в каудоталамических узлах (рис. 5). Эпилепсия при синдроме Зельвегера типично включает в себя парциальные моторные припадки, которые поддаются лечению стандартными противоэпилептическими препаратами и указывают, в какой области мозга имеется мальформация. Нарушение О-гликозилирования (синдром Валкера — Варбурга, заболевание мышц глаз, мозга, мышечная дистрофия Фукуямы) приводит к мальформациям мозга, включая лиссэнцефалию (рис. 6). У пациентов часто имеются припадки, не поддающиеся лечению. На ЭЭГ обнаруживается патологическая бета-активность.

Витаминзависимые эпилепсии

Пиридоксинзависимая эпилепсия и дефицит пиридокс(ам)инфосфат-оксигеназы

Феномен пиридоксинзависимой эпилепсии известен с 1954 г., но молекулярную основу ее надо было еще выяснить. Возможным метаболическим маркером для этого заболевания, похоже, была пипеколиновая кислота в плазме и ЦСЖ, уровень которой увеличивался перед назначением пиридоксина и снижался во время лечения, хотя все равно не достигал нормы. При изучении генетики в некоторых семьях была выявлена цепочка, включающая хромосому 5q-31.

В классификации пиридоксинзависимой эпилепсии выделяют типичную, рано начинающуюся, появляющуюся в первые дни жизни, и атипичную, поздно начинающуюся, проявляющуюся к 34-летнему возрасту. При раннем начале могут быть пренатальные судороги, возникающие в срок гестации около 20 недель. Часто встречается (в 1/3 случаев) неонатальная энцефалопатия с повышенной тревожностью, раздражительностью и чувствительностью к внешним раздражителям. Она может сопровождаться системным поражением, таким как респираторный дистресс-синдром, тошнота, абдоминальные нарушения, метаболический ацидоз. Многие приступы начинаются в первые дни жизни и не поддаются стандартному лечению. Могут отмечаться структурные мозговые нарушения, такие как гипоплазия задней части мозолистого тела, церебральная гипоплазия или гидроцефалия и другие нарушения, как, например, геморрагии или органические поражения белого вещества мозга. Определяется четкая (до минут) реакция в виде прекращения судорожной активности на в/в введение 100 мг пиридоксина. Однако у 20% новорожденных с пиридоксинзависимой эпилепсией первая доза пиридоксина может вызвать угнетение: новорожденные становятся гипотоничными и в течение нескольких часов спят, реже развивается апноэ, нарушения функций сердечно-сосудистой системы и изоэлектрическая картина на ЭЭГ. Церебральное угнетение от первой дозы пиридоксина более характерно при назначении новорожденным антиконвульсантов.

Наоборот, при поздно начинающейся пиридоксинзависимой эпилепсии не развиваются энцефалопатия и структурные мозговые нарушения. У детей старше 3-летнего возраста приступы развиваются на любом году жизни. Часто они развиваются в контексте фебрильных состояний и могут трансформироваться в эпистатус. Обычно противоэпилептические препараты оказывают положительный эффект, но затем все равно становится трудно контролировать эти приступы. Пиридоксин в суточной дозе 100 мг per os обеспечивает прекращение судорожной активности на 2-дневный срок. При поздно начавшейся пиридоксинзависимой эпилепсии церебрального угнетения не отмечается.

В настоящее время единственным подтверждением диагноза пиридоксинзависимой эпилепсии является прекращение приступов при назначении пиридоксина. Лечение проводится пожизненно, и суточная доза пиридоксина составляет 15-500 мг/кг. Постоянным симптомом пиридоксинзависимой эпилепсии являются трудности в учебе, особенно при изучении языков. Прекращение лечения на несколько месяцев или лет вызывает развитие тяжелых двигательных расстройств, трудности в учебе, чувствительные нарушения. Каждому новорожденному при наличии приступов, даже с диагностированной перинатальной асфиксией или сепсисом, необходимо назначать пиридоксин.

Пиридокс(ам)инфосфат-оксидаза (ПФО) катализирует превращение пиридоксинфосфата в активный кофактор — пиридоксальфосфат. Дефицит ПФО обусловливает неонатальные приступы, похожие на таковые при пиридоксиндефицитной эпилепсии с ранним дебютом, но они не поддаются лечению пиридоксином, а лечатся пиридоксальфосфатом в суточной дозе 10-50 мг/кг. Пиридоксальфосфат — это кофактор для различных ферментов в процессе синтеза нейротрансмиттеров и распада треонина и глицина. Биохимическим маркером заболевания служит снижение концентрации гомованильной кислоты и 5-гидроксииндолацетата (продукт распада допамина и серотонина) и повышение концентрации 3-метокситирозина, глицина и треонина в ликворе. Прогноз лечения дефицита ПФО не выяснен. Предполагается, что при отсутствии лечения наступает летальный исход.

Фолиевозависимые приступы

Это редкое заболевание, лечение которого проводится фолиевой кислотой. Молекулярная основа этой патологии не ясна. Во всех случаях до настоящего времени в ликворе обнаруживается неопределенное вещество. Новорожденным с фолиевозависимой эпилепсией необходимо пробное назначение фолиевой кислоты в том случае, если нет эффекта от пиридоксина и пиридоксальфосфата.

Дефицит биотинидазы и голокарбоксилазсинтазы

Биотинидаза — кофактор различных карбоксилаз. В моче накапливаются разные метаболиты и часто развивается лактат-ацидоз. При дефиците биотинидазы развиваются эндогенные нарушения обмена биотина. Эпилепсия начинается обычно после 3-4-месячного возраста, и часто отмечаются инфантильные спазмы, атрофия зрительного нерва и потеря слуха. Ключом к диагнозу является наличие алопеции и дерматита. Приступы обычно купируются при назначении биотина в дозе 5-20 мг/сут. При дефиците голокарбоксилазсинтазы симптомы появляются в неонатальном периоде. Судороги отмечаются лишь у 25-50% больных. Биотин эффективен в вышеописанной дозировке, хотя у некоторых детей необходимо применять более высокие дозы.

Смешанные нарушения

Дефицит кофактора молибдена и сульфит-оксидазы

Эти редкие врожденные нарушения метаболизма обычно проявляются в неонатальном периоде энцефалопатией, трудно поддающимися лечению судорогами (чаще миоклоническими) и смещением хрусталика. На МРТ выявляются кисты в белом веществе мозга и выраженная атрофия. Легкий скрининговый тест — это простой тест с использованием сульфитных полосок, проводящийся путем опускания их в порцию только что собранной мочи. В фибробластах обнаруживается дефицит различных ферментов. Схем лечения данной патологии пока нет.

Болезнь Менкеса

Дети с таким дефектом рецессивной Х-хромосомы всегда страдают эпилепсией, часто с резистентными к лечению инфантильными спазмами. Диагноз подтверждается при выявлении низкого уровня меди и церулоплазмина в сыворотке крови. Назначение подкожного введения гистидината меди может вызвать прекращение приступов и приостановить развитие заболевания.

Дефицит биосинтеза серина

Биосинтез серина нарушается при дефиците двух ферментов: 3-фосфатглицератдегидрогеназы и 3-фосфосеринфосфатазы. Был описан только один случай возникновения этой патологии в старшей возрастной группе. Вообще это довольно редко встречающееся заболевание. Дети с данной патологией рождаются с микроцефалией. Приступы у них развиваются на первом году жизни, чаще это синдром Веста. Приступы регрессируют при назначении добавок с серином per os. Ключом к правильному диагнозу служит обнаружение низкого уровня серина в ликворе. На МРТ выявляется атрофия белого вещества мозга и демиелинизация.

Врожденные нарушения процесса гликозилирования (ВНГ)

У детей с ВНГ 1а типа (дефицит фосфоманномутазы) эпилепсия встречается редко, иногда только в виде острых инсультоподобных эпизодов. Однако это частый синдром при ВНГ типа 1. У пациентов с другими подтипами ВНГ 1 типа описаны единичные случаи приступов. Клиническая картина приступов вариабельна в зависимости от подгрупп. Лечение стандартными противоэпилептическими препаратами проводится в зависимости от клинической картины приступов. Диагноз ставится на основании изоэлектрического фокусирования трансферрина, что входит в комплекс обследования детей с неуточненной эпилепсией и задержкой умственного развития.

Врожденные нарушения возбудимости мозга

Концепция врожденных нарушений метаболизма состоит в том, что это название подразумевает нарушение потока веществ через клеточные мембраны. Нейронная возбудимость заканчивается возникновением мембранного потенциала, который поддерживается энергозависимым ионным насосом (Na-K-АТФаза и К/Сl-транспортер) и модулируется ионным потоком через белковые каналы. Они постоянно закрыты и открываются (и тем самым обеспечивают поток ионов через мембрану) в ответ на действие лигандов (таких, как нейротрансмиттеры) или изменение мембранного потенциала. Генетические дефекты ионных каналов могут быть причиной разных эпилептических синдромов. Так, в некоторых случаях, таких как следствие нарушений метаболизма, может развиваться первичная эпилепсия.

Генетические дефекты альфа-2-субъединицы-Na-K-АТФазы 1 — это одна из причин семейной мигрирующей гемиплегии у детей. В обоих случаях высока вероятность возникновения эпилепсии. В одной семье пытались выяснить, были ли семейные спазмы изолированным заболеванием или же они идут в сочетании с мигрирующей гемиплегией. Генетические дефекты К/Сl-транспортера 3 — одна из причин синдрома Андерманна (болезнь Чарлевокса, или агенезия мозолистого тела в сочетании с периферической невропатией). При этом заболевании также часто развивается эпилепсия.

Лигандные нарушения закрытых ионных каналов также могут проявляться эписиндромом. Генетические дефекты нейронных рецепторов к никотинацетилхолину (альфа-4- или бета-2-субъединиц) — одна из причин аутосомно-доминантной лобной эпилепсии. Наследственные дефекты альфа-1-субъединицы ГАМК-А рецептора — одна из причин миоклонической ювенильной эпилепсии. Мутации в ген-коде гамма-2-субъединицы этого рецептора вызывают генерализованные эпилептические фебрильные плюс-судороги (ГЭФС+), тяжелую миоклоническую эпилепсию новорожденных (ТМЭН) и абсансы у детей.

Другие врожденные каналопатии также могут проявляться эписиндромами. Дефекты в вольтаж-закрытых калиевых каналах — одна из причин семейных неонатальных спазмов. Нарушения в вольтаж-закрытых хлорных каналах — одна из причин ювенильных абсансов, миоклонической ювенильной эпилепсии и генерализованной эпилепсии с приступами grand-mal. Мутации в генах, кодирующих различные альфа-субъединицы вольтаж-закрытых калиевых каналов мозга, обусловливают неонатальные инфантильные спазмы (тип II альфа-субъединица), ГЭФС+ и ТМЭН. Так как ГЭФС+ и ТМЭН—аллельные нарушения в двух различных локусах и обе формы эпилепсии могут встречаться у членов одной семьи, ТМЭН считается наиболее тяжелой фенотипией в спектре ГЭФС+-эпилепсии.

Заключение

Врожденные нарушения метаболизма редко проявляются эпилепсией. Однако эпилептический синдром часто характерен для других метаболических расстройств. Каким же пациентам необходимо скрининговое обследование и при наличии каких нарушений метаболизма? Ответ на этот вопрос, конечно же, не прост. Метаболические расстройства должны быть заподозрены, если эпилепсия резистентна к стандартному лечению и если есть такие симптомы, как задержка умственного развития и двигательные нарушения. Иногда выявляемые данные обследования пациентов являются характерными для определенного метаболического нарушения, например, типичная МРТ-картина при митохондриальных нарушениях. Если первый приступ имеет место во взрослом возрасте пациента, спектр метаболических расстройств более узок по сравнению с таковым у детей.

У детей те или иные диагностические методы используются в зависимости от возраста. В неонатальном периоде всем необходимо назначать пиридоксин- или пиридоксальфосфат с диагностической целью, даже в том случае, если приступы обусловлены сепсисом или перинатальной асфиксией. Если приступы не поддаются лечению стандартными противоэпилептическими препаратами, необходимо пробное назначение фолиевой кислоты. При наличии врожденной миоклонической энцефалопатии часто предполагают врожденное нарушение метаболизма, хотя иногда уточнить его характер не удается. Дополнительные обследования назначают, если выявляются ухудшение на ЭЭГ, проведенной перед приемом пищи (ГЛУТ-1-дефицит), двигательные расстройства (дефицит креатина), изменения со стороны кожи и волос (болезнь Менкеса и дефицит биотинидазы), дисморфологические симптомы (синдром Зельвегера), другие расстройства (митохондриальные болезни). Пациенты с парциальной эпилепсией (если это не синдром Рамуссена) и резистентным к противоэпилептическим препаратам эпистатусом должны пройти обследование на предмет митохондриальных нарушений, особенно деплецию митохондриальной ДНК, часто встречающуюся при болезни Альперса. Базовые обследования метаболизма должны включать в себя такие анализы, как уровень глюкозы в сыворотке крови и ликворе, уровень лактата, аммония и аминокислот в крови и ликворе, определение уровня мочевой кислоты.

Диагноз метаболического нарушения у пациента с приступами дает возможность правильно подобрать лечение и тем самым улучшить состояние пациента. Часто, несмотря ни на что, должны назначаться и противоэпилептические препараты. Если нет возможности назначить специфическое лечение, назначаются неспецифические противоэпилептические препараты; при некоторых вариантах приступов целесообразно назначение любого из противоэпилептических препаратов, кроме вальпроевой кислоты. Она не применяется в случаях митохондриальных расстройств, нарушений в цикле мочевины и с осторожностью назначается при многих других нарушениях метаболизма. Уточнение диагноза помогает не только определиться с тактикой лечения, но и дает возможность рассказывать членам семьи пациента, что является наиболее важным в изменении состояния пациента.


Список литературы

1. Applegarth D.A., Toone J.R. Glycine encephalopathy (nonketotic hyperglycinaemia): review and update // J Inherit Metab Dis, 2004; 27: 417-22.

2. Barkovich A.J., Peck W.W. MR of Zellweger syndrome // AJNR, 1997; 18: 1163-70.

3. Baxter P. Epidemiology of pyridoxine dependent and pyridoxine responsive seizures in the UK // Arch. Dis. Child., 1999; 81: 431-3.

4. Baxter P., Griffiths P., Kelly T., Gardner-Medwin D. Pyridoxine-dependent seizures: demographic, clinical, MRI and psychometric features, and effect of dose on intelligence quotient // Dev Med Child Neurol., 1996; 38: 998-1006.

5. Berkovic S.F., Heron S.E., Giordano L. et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy // Ann Neurol, 2004; 55: 550-7.

6. Brautigam C., Hyland K., Wevers R. et al. Clinical and laboratory findings in twins with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency // Neuropediatrics, 2002; 33: 113-7.

7. Brini M., Pinton P., King M.P., Davidson M., Schon E.A., Rizzuto R. A calcium signalling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency // Nat Med 1999; 5: 951-4.

8. Brockmann K., Wang D., Korenke C.G. et al. Autosomal dominant glut-1 deficiency syndrome and familial epilepsy // Ann Neurol, 2001; 50: 476-85.

9. Castro M., Perez-Cerda C., Merinero B. et al. Screening for adenylosuccinate lyase deficiency: clinical, biochemical and molecular findings in four patients // Neuropediatrics, 2002; 33: 186-9.

10. Charlier C., Singh N.A., Ryan S.G. et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family // Nat Genet, 1998; 18: 53-5.

11. Claes L., Ceulemans B., Audenaert D. et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy // Hum Mutat, 2003; 21: 615-21.

12. Claes L., Del Favero J., Ceulemans B., Lagae L., Van Broeckhoven C., De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy // Am J Hum Genet., 2001; 68: 1 322-7.

13. Clayton P.T., Surtees R.A., DeVile C., Hyland K., Heales S.J. Neonatal epileptic encephalopathy // Lancet, 2003; 361: 1614.

14. Collins J.E., Nicholson N.S., Dalton N., Leonard J.V. Biotinidase deficiency: early neurological presentation // Dev Med Child Neurol 1994; 36: 268-70.

15. Cooper J.D. Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis // Curr Opin Neurol, 2003; 16: 121-8.

16. Cormier-Daire V., Dagoneau N., Nabbout R. et al. A gene for pyridoxine-dependent epilepsy maps to chromosome 5q31 // Am J Hum Genet, 2000; 67: 991-3.

17. Cossette P., Liu L., Brisebois K. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy // Nat Genet, 2002; 31: 184-9.

18. Darin N., Oldfors A., Moslemi A.R., Holme E., Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities // Ann Neurol, 2001; 49: 377-83.

19. De Fusco M., Becchetti A., Patrignani A. et al. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy // Nat Genet, 2000; 26: 275-6.

20. de KoningT.J., Klomp L.W. Serine-deficiency syndromes // Curr Opin Neurol, 2004; 17: 197-204.

21. Dupre N., Howard H.C., Mathieu J. et al. Hereditary motor and sensory neuropathy with agenesis of the corpus callosutn // Ann Neurol., 2003; 54: 9-18.

22. Escayg A., MacDonald B.T., Meisler M.H. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 // Nat Genet, 2000; 24: 343-5.

23. Ferrari G., Lamantea E., Donati A. et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase- g A // Brain, 2005; 128: 723-31.

24. Coutieres F., Aicardi J. Atypical presentations of pyridoxine-dependent seizures: a treatable cause of intractable epilepsy in infants // Ann Neurol, 1985; 17: 117-20.

25. Grewal P.K., Hewitt J.E. Glycosylation defects: a new mechanism for muscular dystrophy? // Hum Mol Genet 2003; 1 2: R259-R264.

26. Gropman A. Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency // Ann Neurol, 2003; 54(Suppl 6):S66-S72.

27. Grunewald S., Imbach T., Huijben K. et al. Clinical and biochemical characteristics of congenital disorder of glycosylation type Ic, the first recognized endoplasmic reticulum defect in N-glycan synthesis // Ann Neurol, 2000; 47: 776-81.

28. Hamosh A., Maher J.F., Bellus G.A., Rasmussen S.A., Johnston M.V. Long-term use of high-dose benzoate and dextromethorphan for the treatment of nonketotic hyperglycinemia // J Pediatr, 1998; 1 32: 709-13.

29. Harkin L.A., Bowser D.N., Dibbens L.M. et al. Truncation of the GABA(A)-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus // Am J Hum Genet., 2002; 70: 530-6.

30. Haug K., Warnstedt M., Alekov A.K. et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies // Nat Genet, 2003; 33: 527-32.

31. Howard H.C., Mount D.B., Rochefort D. et al. The K-CI cotrans-porter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum // Nat Genet, 2002; 32: 384-92.

32. Hunt Jr. A.D., Stokes Jr. J., McCrory W.W., Stroud H.H. Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine // Pediatrics, 1954; 13: 140-5.

33. Lizuka T., Sakai F., Kan S., Suzuki N. Slowly progressive spread of the stroke-like lesions in MELAS // Neurology, 2003; 61: 1238-44.

34. Lizuka T., Sakai F., Suzuki N. et al. Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome // Neurology, 2002; 59: 816-24.

35. Item C.B., Stockler-lpsiroglu S., Stromberger C. et al. Arginine:gly-cine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans // Am J Hum Genet, 2001; 69: 1127-33.

36. Jaeken J. Genetic disorders of gamma-aminobutyric acid, glycine, and serine as causes of epilepsy // J Child Neurol, 2002; 17(Suppl 3): 3S84-3S87.

37. Jaeken J. Komrower Lecture. Congenital disorders of glycosylation (CDC): it"s all in it! // J Inherit Metab Dis., 2003; 26: 99-118.

38. Jaeken J., Corbeel L., Casaer P., Carchon H., Eggermont E., Eeckels R. Dipropylacetate (valproate) and glycine metabolism // Lancet 1977; 2: 617.

39. Klepper J., Fischbarg J., Vera J.C., Wang D., De Vivo D.C. GLUT1 -deficiency: barbiturates potentiate haploinsufficiency in vitro // Pediatr. Res., 1999; 46: 677-83.

40. Kunz W.S. The role of mitochondria in epileptogenesis // Curr. Opin. Neurol., 2002; 15: 179-84.

41. Kuo M.F., Wang H.S. Pyridoxal phosphate-responsive epilepsy with resistance to pyridoxine // Pediatr Neurol., 2002; 26: 146-7.

42. MacDermot K., Nelson W., Weinberg J.A., Schulman J.D. Valproate in nonketotic hyperglycinemia // Pediatrics, 1980; 65: 624.

43. Mitchison H.M., Hofmann S.L., Becerra C.H. et al. Mutations in the palmitoyl-protein thioesterase gene (PPT; CLN1) causing juvenile neuronal ceroid lipofuscinosis with granular osmiophilic deposits // Hum Mol Genet, 1998; 7: 291-7.

44. Molinari F., Raas-Rothschild A., Rio M. et al. Impaired mitochon-drial glutamate transport in autosomal recessive neonatal myoclonic epilepsy // Am J Hum Genet., 2004; 76: 334-9.

45. Naviaux R.K., Nguyen K.V. POLC mutations associated with Alp-ers" syndrome and mitochondrial DNA depletion // Ann Neurol., 2004; 55: 706-12.

46. Pearl P.L., Gibson K.M., Acosta M.T. et al. Clinical spectrum of suc-cinic semialdehyde dehydrogenase deficiency // Neurology, 2003; 60: 1413-7.

47. Plecko B., Stockler-lpsiroglu S., Paschke E., Erwa W., Struys E.A., Jakobs C. Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy // Ann Neurol., 2000; 48: 121-5.

48. Rahman S., Blok R.B., Dahl H.H. et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities // Ann Neurol., 1996; 39: 343-51.

49. Sadleir L.G., Connolly M.B., Applegarth D. et al. Spasms in children with definite and probable mitochondrial disease // Eur J Neurol., 2004; 11: 103-10.

50. Salbert B.A., Pellock J.M., Wolf B. Characterization of seizures associated with biotinidase deficiency // Neurology, 1993; 43: 1351-5.

51. Salomons G.S., van Dooren S.J., Verhoeven N.M. et al. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome // Am I Hum Genet, 2001; 68: 1497-500.

52. Schulze A., Bachert P., Schlemmer H. et al. Lack of creatine in muscle and brain in an adult with GAMT deficiency // Ann Neurol, 2003; 53: 248-51.

53. Schulze A., Ebinger F., Rating D., Mayatepek E. Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation // Mol Genet Metab, 2001; 74: 413-9.

54. Seidner G., Alvarez M.G., Yeh J.l. et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier // Nat Genet, 1998; 18: 188-91.

55. Sfaello I., Castelnau P., Blanc N., Ogier H., Evrard P., Arzimanoglou A. Infantile spasms and Menkes disease // Epileptic Disord, 2000; 2: 227-30.

56. Singh N.A., Charlier C., Stauffer D. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of new-borns // Nat. Genet., 1998; 18: 25-9.

57. Singh R., Andermann E., Whitehouse W.P. et al. Severe myoclonic epilepsy of infancy: extended spectrum of GEFS+? // Epilepsia, 2001; 42: 837-44.

58. So N., Berkovic S., Andermann F., Kuzniecky R., Cendron D., Quesney L.F. Myoclonus epilepsy and ragged-red fibres (MERRF). 2. Electrophysiological studies and comparison with other progressive myoclonus epilepsies // Brain, 1989; 112: 1261-76.

59. Steinlein O.K., Mulley J.C., Propping P. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy // Nat Genet 1995; 11: 201-3.

60. Stockier S., Isbrandt D., Hanefeld F., Schmidt B., von Figura K. Cuanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man // Am J. Hum Genet, 1996; 58: 914-22.

61. Swoboda K.J., Kanavakis E., Xaidara A. et al. Alternating hemiplegia of childhood or familial hemiplegic migraine? A novel ATP1A2 mutation // Ann Neurol, 2004; 55: 884-7.

62. Takahashi Y., Suzuki Y., Kumazaki K. et al. Epilepsy in peroxisomal. Diseases // Epilepsia, 1997; 38: 182-8.

63. Tharp B.R. Unique EEC pattern (comb-like rhythm) in neonatal maple syrup urine disease // Pediatr. Neurol., 1992; 8: 65-8.

64. Thomson A.M. Glycine is a coagonist at the NMDA receptor/channel complex // Prog Neurobiol., 1990; 35: 53-74.

65. Torres O.A., Miller V.S., Buist N.M., Hyland K. Folinic acid-responsive neonatal seizures // J. Child Neurol, 1999; 14: 529-32.

66. Van den Berghe G., Vincent M.F., Jaeken J. Inborn errors of the purine nucleotide cycle: adenylosuccinase deficiency // J. Inherit Metab Dis., 1997; 20: 193-202.

67. Van Kuilenburg A.B., Vreken P., Abeling N.G. et al. Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency // Hum Genet., 1999; 104: 1-9.

68. Vanmolkot K.R., Kors E.E., Hottenga J.J. et al. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions // Ann Neurol., 2003; 54: 360-6.

69. Von Moers A., Brockmann K., Wang D. et al. EEC features of glut-1 deficiency syndrome // Epilepsia, 2002; 43: 941-5.

70. Wallace R.H., Marini C., Petrou S. e al. MutantGABA(A) receptor γ2-subunit in childhood absence epilepsy and febrile seizures // Nat Genet 2001; 28: 49-52.

71. Wolf N.l., Smeitink J.A. Mitochondrial disorders: a proposal for consensus diagnostic criteria in infants and children // Neurology, 2002; 59: 1402-5.

72. Yanling Y., Qiang G., Zhixiang Z., Chunlan M., Lide W., Xiru W. A clinical investigation of 228 patients with phenylketonuria in mainland China // Southeast Asian J TropMed Public Health, 1999; 30(Suppl 2): 58-60.

73. Zschocke J., Ruiter J.P., Brand J. et al. Progressive infantile neuro-degeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism // Pediatr. Res., 2000; 48: 852-5.

74. Zupanc M.L., Legros B. Progressive myoclonic epilepsy // Cerebellum, 2004; 3: 156-71.

Известно, что белки подвергаются гидролизу под влиянием эндо- и экзопептидаз, образующихся в желудке, поджелудочной железе и кишечнике. Эндопептидазы (пепсин, трипсин и химотрипсин) вызывают расщепление белка в средней его частин до альбумоз и пептонов. Экзопептидазы (карбопептидаза, аминопептидаза и дипептидаза), образующиеся в поджелудочной железе и тонком кишечнике, обеспечивают отщепление концевых участков белковых молекул и продуктов их распада до аминокислот, всасывание которых происходит в тонком кишечнике с участием АТФ.

Нарушения гидролиза белков могут быть вызваны многими причинами: воспаление, опухоли желудка, кишечника, поджелудочной железы; резекции желудка и кишечника; общие процессы типа лихорадки, перегревания, гипотермии; при усилении перистальтики вследствие расстройств нейроэндокринной регуляции. Все вышеназванные причины ведут к дефициту гидролитических ферментов или ускорению перистальтики, когда пептидазы не успевают обеспечить расщепление белков.

Нерасщепленные белки поступают в толстый кишечник, где под влиянием микрофлоры начинаются процессы гниения, приводящие к образованию активных аминов (кадаверин, тирамин, путресцин, гистамин) и ароматических соединений типа индола, скатола, фенола, крезола. Эти токсические вещества обезвреживаются в печени путем соединения с серной кислотой. В условиях резкого усиления процессов гниения возможна интоксикация организма.

Нарушения всасывания обусловлены не только расстройствами расщепления, но и дефицитом АТФ, связанным с торможением сопряжения дыхания и окислительного фосфорилирования и блокадой данного процесса в стенке тонкого кишечника при гипоксии, отравлениях флоридзином, монойодацетатом.

Нарушения расщепления и всасывания белков, так же как и недостаточное поступление белков в организм, ведут к белковому голоданию, нарушению синтеза белка, анемии, гипопротеинемии, склонности к отекам, недостаточности иммунитета. В результате активации системы гипоталамус-гипофиз-кора надпочечников и гипоталамо-гипофизарно-тиреоидной системы увеличивается образование глюкокортикоидов и тироксина, которые стимулируют тканевые протеазы и распад белка в мышцах, желудочно-кишечном тракте, лимфоидной системе. Аминокислоты при этом могут служить энергетическим субстратом и, кроме того, усиленно выводятся из организма, обеспечивая формирование отрицательного азотистого баланса. Мобилизация белка является одной из причин дистрофии, в том числе в мышцах, лимфоидных узлах, желудочно-кишечном тракте, что усугубляет нарушение расщепления и всасывания белков.

При всасывании нерасщепленного белка возможна аллергизация организма. Так, искусственное вскармливание детей нередко ведет к аллергизации организма по отношению к белку коровьего молока и другим белковым продуктам. Причины, механизмы и последствия нарушений расщепления и всасывания белков представлены на схеме 8.

Схема 8. Нарушения гидролиза и всасывания белков
Нарушения гидролиза Нарушения всасывания
Причины Воспаление, опухоли, резекции желудка и кишечника, усиление перистальтики (нервные влияния, снижение кислотности желудка, прием недоброкачественной пищи)
Механизмы Дефицит эндопептидаз (пепсин, трипсин, химотрипсин) и экзопептидаз (карбо-, амино- и дипептидазы) Дефицит АТФ (всасывание аминокислот - активный процесс и происходит с участием АТФ)
Последствия Белковое голодание -> гипопротеинемия отеки, анемия; нарушение иммунитета -> склонность к инфекционным процессам; диарея, нарушение транспорта гормонов.

Активация катаболизма белков -> атрофия мышц, лимфоидных узлов, желудочно-кишечного тракта с последующим усугублением нарушений процессов гидролиза и всасывания не только белков, витаминов, но и других веществ; отрицательный азотистый баланс.

Всасывание нерасщепленного белка -> аллергизация организма.

При поступлении нерасщепленных белков в толстый кишечник усиливаются процессы бактериального расщепления (гниения) с образованием аминов (гистамин, тирамин, кадаверин, путресцин) и ароматических токсических соединений (индол, фенол, крезол, скатол)

Этот тип патологических процессов включает недостаточность синтеза, усиление распада белков, нарушения превращения аминокислот в организме.

  • Нарушение синтеза белка.

    Биосинтез белков происходит на рибосомах. С участием транспортной РНК и АТФ на рибосомах образуется первичный полипептид, в котором последовательность включения аминокислот определяется ДНК. Синтез альбуминов, фибриногена, протромбина, альфа- и бета-глобулинов происходит в печени; гамма-глобулины образуются в клетках ретикулоэндотелиальной системы. Нарушения синтеза белка наблюдаются при белковом голодании (в результате голодания или нарушения расщепления и всасывания), при поражении печени (расстройства кровообращения, гипоксия, цирроз, токсико-инфекционные поражения, дефицит анаболических гормонов). Важной причиной является наследственно обусловленное поражение В-системы иммунитета, при котором блокировано образование гамма-глобулинов у мальчиков (наследственные агаммаглобулинемии).

    Недостаточность синтеза белка приводит к гипопротеинемии, нарушению иммунитета, дистрофическим процессам в клетках, возможно замедление свертываемости крови из-за уменьшения фибриногена и протромбина.

    Увеличение синтеза белка обусловлено избыточной продукцией инсулина, андрогенов, соматотропина. Так, при опухоли гипофиза с вовлечением эозинофильных клеток образуется избыток соматотропина, что приводит к активации синтеза белка и усилению процессов роста. Если избыточное образование соматотропина происходит в организме с незавершенным ростом, то усиливается рост тела и органов, проявляющийся в виде гигантизма и макросомии. Если усиление секреции соматотропина происходит у взрослых, то увеличение синтеза белка приводит к росту выступающих частей тела (кистей, стоп, носа, ушей, надбровных дуг, нижней челюсти и т. д.). Это явление получило название акромегалии (от греч. acros - кончик, megalos - большой). При опухоли сетчатой зоны коры надпочечников, врожденном дефекте образования гидрокортизона, а также опухоли семенников усиливается образование адрогенов и активируется синтез белка, что проявляется в увеличении объема мускулатуры и раннем формировании вторичных половых признаков. Увеличение синтеза белка является причиной положительного азотистого баланса.

    Увеличение синтеза иммуноглобулинов происходит при аллергических и аутоаллергических процессах.

    В ряде случаев возможно извращение синтеза белка и образование белков, которые в норме не обнаруживаются в крови. Это явление получило название парапротеинемии. Парапротеинемия наблюдается при миеломной болезни, болезни Вальденстрема, некоторых гаммапатиях.

    При ревматизме, тяжелых воспалительных процессах, инфаркте миокарда, гепатите синтезируется новый, так называемый С-реактивный белок. Он не является иммуноглобулином, хотя его появление обусловлено реакцией организма на продукты повреждения клеток.

  • Усиление распада белков.

    При белковом голодании, изолированном увеличении образования тироксина и глюкокортикоидов (гипертиреоз, синдром и болезнь Иценко-Кушинга) активируются тканевые катепсины и распад белка прежде всего, в клетках поперечно-полосатой мускулатуры, лимфоидных узлов, желудочно-кишечного тракта. Образующиеся аминокислоты выделяются в избытке с мочой, что способствует формированию отрицательного азотистого баланса. Избыточная продукция тироксина и глюкокортикоидов проявляется также в нарушении иммунитета и повышенной склонности к инфекционным процессам, дистрофии различных органов (поперечно-полосатой мускулатуры, сердца, лимфоидных узлов, желудочно-кишечного тракта).

    Наблюдения показывают, что за три недели в организме взрослого человека белки обновляются наполовину путем использования аминокислот, поступивших с пищей, и за счет распада и ресинтеза. По данным Мак-Мюррей (1980), при азотистом равновесии ежедневно синтезируется 500 г белков, т. е. в 5 раз больше, чем поступает с пищей. Это может быть достигнуто за счет повторного использования аминокислот, в том числе и образующихся при распаде белков в организме.

    Процессы усиления синтеза и распада белков и их последствия в организме представлены в схемах 9 и 10.

    Схема 10. Нарушение азотистого равновесия
    Положительный азотистый баланс Отрицательный азотистый баланс
    Причины Увеличение синтеза и, как следствие, уменьшение выведения азота из организма (опухоли гипофиза, сетчатой зоны коры надпочечников). Преобладание распада белка в организме и, как следствие, выделение азота в большем количестве по сравнению с поступлением.
    Механизмы Усиление продукции и секреции гормонов, обеспечивающих синтез белка (инсулин, соматотропин, гормоны андрогенного действия). Увеличение продукции гормонов, стимулирующих катаболизм белка путем активации тканевых катепеи-нов (тироксин, глюкокортикоиды).
    Последствия Ускорение процессов роста, преждевременное половое созревание. Дистрофия, в том числе и желудочно-кишечного тракта, нарушение иммунитета.
  • Нарушения превращения аминокислот.

    В ходе межуточного обмена аминокислоты подвергаются трансаминированию, дезаминированию, декарбоксилированию. Трансаминирование направлено на образование новых аминокислот путем переноса аминогруппы на кетокислоту. Акцептором аминогрупп большинства аминокислот является альфа-кетоглютаровая кислота, которая превращается в глютаминовую. Последняя снова может отдавать аминогруппу. Этот процесс контролируется трансаминазами, коферментом которых является пиридоксальфосфат, производное витамина В 6 (пиридоксин). Трансаминазы содержатся в цитоплазме и митохондриях. Донатором аминогрупп является глютаминовая кислота, находящаяся в цитоплазме. Из цитоплазмы глютаминовая кислота поступает в митохондрии.

    Торможение реакций трансаминирования возникает при гипоксии, дефиците витамина В 6 , в том числе при подавлении сульфаниламидами, фтивазидом кишечной микрофлоры, которая частично синтезирует витамин В 6 , а также при токсико-инфекционных поражениях печени.

    При тяжелых повреждениях клеток с явлениями некроза (инфаркт, гепатит, панкреатит) трансаминазы из цитоплазмы поступают в большом количестве в кровь. Так, при остром гепатите, по данным Мак-Мюррея (1980), активность глютамат-алланинтрансферазы в сыворотке крови возрастает в 100 раз.

    Основным процессом, приводящим к разрушению аминокислот (деградации их), является безаминирование, при котором под влиянием ферментов аминооксидаз образуются аммиак и кетокислота, подвергающиеся дальнейшему превращению в цикле трикарбоновых кислот до С0 2 и Н 2 0. Гипоксия, гиповитаминозы С, РР, В 2 , В 6 блокируют распад аминокислот по этому пути, что способствует их увеличению в крови (аминоацидемия) и выделению с мочой (аминоацидурия). Обычно при блокаде дезаминирования часть аминокислот подвергается декарбоксилированию с образованием ряда биологически активных аминов - гистамина, серотонина, гама-амино-масляной кислоты, тирамина, ДОФА и др. Декарбоксилирование тормозится при гипертиреозе и избытке глюкокортикоидов.

В результате дезаминирования аминокислот образуется аммиак, который обладает сильно выраженным цито-токсическим эффектом, особенно для клеток нервной системы. В организме сформирован ряд компенсаторных процессов, обеспечивающих связывание аммиака. В печени из аммиака синтезируется мочевина, являющаяся сравнительно безвредным продуктом. В цитоплазме клеток аммиак связывается глютаминовой кислотой с образованием глютамина. Этот процесс получил название амидирования. В почках аммиак соединяется с ионом водорода и в виде солей аммония удаляется с мочой. Этот процесс, названный аммониогенезом, является одновременно важным физиологическим механизмом, направленным на поддержание кислотно-щелочного равновесия.

Таким образом, в результате дезаминирования и синтетических процессов в печени образуются такие конечные продукты азотистого обмена, как аммиак и мочевина. В ходе превращения в цикле трикарбоновых кислот продуктов межуточного обмена белков - ацетилкоэнзима-А, альфа-кетоглютарата, сукцинилкоэнзима-А, фумарата и оксалоацетата - образуются АТФ, вода и С0 2 .

Конечные продукты азотистого обмена выделяются из организма разными путями: мочевина и аммиак - преимущественно с мочой; вода с мочой, через легкие и потоотделением; С0 2 - преимущественно через легкие и в виде солей с мочой и потом. Эти небелковые вещества, содержащие азот, составляют остаточный азот. В норме его содержание в крови составляет 20-40 мг% (14,3-28,6 ммоль/л).

Основным феноменом нарушений образования и выведения конечных продуктов белкового обмена является увеличение небелкового азота крови (гиперазотемия). В зависимости от происхождения гиперазотемия подразделяется на продукционную (печеночную) и ретенционную (почечную).

Продукционная гиперазотемия обусловлена поражениями печени (воспаление, интоксикации, цирроз, расстройства кровообращения), гипопротеинемией. При этом синтез мочевины нарушается, и аммиак накапливается в организме, оказывая цитотоксический эффект.

Ретенционная гиперазотемия возникает при поражении почек (воспаление, расстройства кровообращения, гипоксия), нарушении оттока мочи. Это ведет к задержке и увеличению в крови остаточного азота. Данный процесс сочетается с активацией альтернативных путей выделения азотистых продуктов (через кожу, желудочно-кишечный тракт, легкие). При ретенционной гиперазотемии увеличение остаточного азота идет преимущественно за счет накопления мочевины.

Нарушения образования мочевины и выделения азотистых продуктов сопровождаются расстройствами водно-электролитного баланса, нарушением функций органов и систем организма, особенно нервной системы. Возможно развитие печеночной или уремической комы.

Причины гиперазотемии, механизмы и изменения в организме при этом представлены на схеме 11.

Схема 11. Нарушения образования и выведения конечных продуктов белкового обмена
ГИПЕРАЗОТЕМИЯ
Печеночная (продукционная) Почечная (ретенционная)
Причины Поражения печени (интоксикации, цирроз, расстройства кровообращения), белковое голодание Нарушение образования мочевины в печени
Механизмы Воспаление почек, расстройства кровообращения, нарушения оттока мочи Недостаточное выделение азотистых продуктов с мочой
Изменения в организме Последствия - Нарушение функции органов и систем, особенно нервной системы. Возможно развитие печеночной или уремической комы.

Механизмы компенсации - Амидирование в клетках, аммониогенез в почках, выделение азотистых продуктов альтернативными путями (через кожу, слизистые, желудочно-кишечный тракт)

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.

Обеспечение организма белками из нескольких источников определяет разнообразную этиологию нарушений белкового обмена. Последние могут носить первичный или вторичный характер.

Одной из наиболее частых причин общих нарушений белкового обмена является количественная или качественная белковая недостаточность первичного (экзогенного) происхождения. Дефекты, связанные с этим, обусловлены ограничением поступления экзогенных белков при полном или частичном голодании, низкой биологической ценностью пищевых белков, дефицитом незаменимых аминокислот (валина, изолейцина, лейцина, лизина, метионина, треонина, триптофана, фенилаланина, гистидина, аргинина).

При некоторых заболеваниях нарушения белкового обмена могут развиваться в результате расстройства переваривания и всасывания белковых продуктов (при гастроэнтеритах, язвенном колите), повышенного распада белка в тканях (при стрессе, инфекционных болезнях), усиленной потери эндогенных белков (при кровопотерях, нефрозе, травмах), нарушения синтеза белка (при гепатитах). Следствием указанных нарушений часто является вторичная (эндогенная) белковая недостаточность с характерным отрицательным азотистым балансом.

При длительной белковой недостаточности резко нарушается биосинтез белков в различных органах, что ведет к патологическим изменениям обмена веществ в целом.

Белковая недостаточность может развиться и при достаточном поступлении белков с пищей, но при нарушении белкового обмена.

Она может быть обусловлена:

  • нарушением расщепления и всасывания белков в ЖКТ;
  • замедлением поступления аминокислот в органы и ткани;
  • нарушением биосинтеза белка; нарушением промежуточного обмена аминокислот;
  • изменением скорости распада белка;
  • патологией образования конечных продуктов белкового обмена.

Нарушения расщепления и всасывания белков.

В пищеварительном тракте белки расщепляются под влиянием протеолитических ферментов. При этом, с одной стороны, белковые вещества и другие азотистые соединения, входящие в состав пищи, теряют свои специфические особенности, с другой стороны, из белков образуются аминокислоты, из нуклеиновых кислот - нуклеотиды и т.д. Образовавшиеся при переваривании пищи или находившиеся в ней азотсодержащие вещества с небольшой молекулярной массой подвергаются всасыванию.

Различают первичные (при различных формах патологии желудка и кишечника - хронических гастритах, язвенной болезни, раке) и вторичные (функциональные) расстройства секреторной и всасывательной функции эпителия в результате отека слизистой оболочки желудка и кишечника, нарушения переваривания белков и всасывания аминокислот в желудочно-кишечном тракте.

Основные причины недостаточного расщепления белков заключаются в количественном уменьшении секреции соляной кислоты и ферментов, снижении активности протеолитических ферментов (пепсина, трипсина, химотрипсина) и связанном с этим недостаточным образованием аминокислот, уменьшении времени их воздействия (ускорение перистальтики). Так, при ослаблении секреции соляной кислоты снижается кислотность желудочного сока, что ведет к уменьшению набухания пищевых белков в желудке и ослаблению превращения пепсиногена в его активную форму - пепсин. В этих условиях часть белковых структур переходит из желудка в двенадцатиперстную кишку в неизмененном состоянии, что затрудняет действие трипсина, химотрипсина и других протеолитических ферментов кишечника. Дефицит ферментов, расщепляющих белки растительного происхождения, ведет к непереносимости злаковых белков (риса, пшеницы и др.) и развитию целиакии.

Недостаточное образование свободных аминокислот из пищевых белков может происходить в случае ограничения поступления в кишечник сока поджелудочной железы (при панкреатите, сдавлении, закупорке протока). Недостаточность функции поджелудочной железы ведет к дефициту трипсина, химотрипсина, карбоангидразы А, Б и других протеаз, воздействующих на длинные полипептидные цепи или расщепляющих короткие олигопептиды, что снижает интенсивность полостного или пристеночного пищеварения.

Недостаточное действие пищеварительных ферментов на белки может возникнуть вследствие ускоренного прохождения пищевых масс по кишечнику при усилении его перистальтики (при энтероколитах) либо уменьшении площади всасывания (при оперативном удалении значительных участков тонкого кишечника). Это ведет к резкому сокращению времени контакта содержимого химуса с апикальной поверхностью энтероцитов, незавершенности процессов энзиматического распада, а также активного и пассивного всасывания.

Причинами нарушения всасывания аминокислот являются повреждение стенки тонкого кишечника (отек слизистой оболочки, воспаление) или неравномерное по времени всасывание отдельных аминокислот. Это ведет к нарушению (дисбалансу) соотношения аминокислот в крови и синтеза белка в целом, поскольку незаменимые аминокислоты должны поступать в организм в определенных количествах и соотношениях. Чаще всего имеет место нехватка метионина, триптофана, лизина и других аминокислот.

Помимо общих проявлений нарушения аминокислотного обмена, могут быть специфические нарушения , связанные с отсутствием конкретной аминокислоты. Так, недостаток лизина (особенно в развивающемся организме) задерживает рост и общее развитие, понижает содержание в крови гемоглобина и эритроцитов. При недостатке в организме триптофана возникает гипохромная анемия. Дефицит аргинина приводит к нарушению сперматогенеза, а гистидина - к развитию экземы, отставанию в росте, угнетению синтеза гемоглобина.

Кроме того, недостаточное переваривание белка в верхних отделах желудочно-кишечного тракта сопровождается усилением перехода продуктов его неполного расщепления в толстый кишечник и ускорением процесса бактериального расщепления аминокислот. В результате увеличивается образование ядовитых ароматических соединений (индола, скатола, фенола, крезола) и развивается общая интоксикация организма этими продуктами гниения.

Замедление поступления аминокислот в органы и ткани.

Всосавшиеся из кишечника аминокислоты поступают непосредственно в кровь и частично в лимфатическую систему, представляя собой запас разнообразных азотистых веществ, которые затем участвуют во всех видах обмена. В норме аминокислоты, всосавшиеся в кровь из кишечника, циркулируют в крови 5 - 10 мин и очень быстро поглощаются печенью и частично другими органами (почками, сердцем, мышцами). Увеличение времени этой циркуляции указывает на нарушение способности тканей и органов (в первую очередь печени) поглощать аминокислоты.

Поскольку ряд аминокислот является исходным материалом при образовании биогенных аминов, задержка их в крови создает условия для накопления в тканях и крови соответствующих протеиногенных аминов и проявления их патогенного действия на различные органы и системы. Повышенное содержание в крови тирозина способствует накоплению тирамина, который участвует в патогенезе злокачественной гипертонии. Длительное повышение содержания гистидина ведет к увеличению концентрации гистамина, что способствует нарушению кровообращения и проницаемости капилляров. Кроме того, повышение содержания аминокислот в крови проявляется увеличением их выведения с мочой и формированием особой формы нарушений обмена - аминоацидурии. Последняя может быть общей, связанной с повышением концентрации в крови нескольких аминокислот, или избирательной - при увеличении содержания в крови какой-либо одной аминокислоты.

Нарушение синтеза белков.

Синтез белковых структур в организме является центральным звеном метаболизма белка. Даже небольшие нарушения специфичности биосинтеза белка могут вести к глубоким патологическим изменениям в организме.

Среди причин, вызывающих нарушения синтеза белка, важное место занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, нарушение количественных соотношений между незаменимыми аминокислотами, поступающими в организм). Если, например, в тканевом белке триптофан, лизин, валин содержатся в равных соотношениях (1:1:1), а с пищевым белком эти аминокислоты поступают в соотношении (1:1:0,5), то синтез тканевого белка будет обеспечиваться при этом только наполовину. При отсутствии в клетках хотя бы одной из 20 незаменимых аминокислот прекращается синтез белка в целом.

Нарушение скорости синтеза белков может быть обусловлено расстройством функции соответствующих генетических структур, на которых происходит этот синтез (транскрипция ДНК, трансляция, репликация). Повреждение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующего излучения, ультрафиолетового облучения и др.). Нарушение синтеза белка могут вызывать некоторые антибиотики. Так, ошибки в считывании генетического кода могут возникнуть под влиянием стрептомицина, неомицина и некоторых других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи. Митомицин угнетает синтез белка за счет алкилирования ДНК (образование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Одной из важных причин, вызывающих нарушение синтеза белков, может явиться нарушение регуляции этого процесса. Интенсивность и направленность белкового обмена регулируют нервная и эндокринная системы, действие которых заключается, вероятно, в их влиянии на различные ферментные системы. Клинический и экспериментальный опыт показывают, что отключение органов и тканей от ЦНС приводит к местному нарушению процессов обмена в денервированных тканях, а повреждение ЦНС вызывает расстройства белкового обмена. Удаление коры головного мозга у животных ведет к снижению синтеза белка.

Соматотропный гормон гипофиза, половые гормоны и инсулин оказывают стимулирующее воздействие на синтез белка. Наконец, причиной патологии синтеза белка может стать изменение активности ферментных систем клеток, участвующих в биосинтезе белка. В крайне выраженных случаях речь идет о блокировке метаболизма, представляющей собой вид молекулярных расстройств, составляющих основу некоторых наследственных заболеваний.

Результатом действия всех перечисленных факторов является обрыв или снижение скорости синтеза как отдельных белков, так и белка в целом.

Выделяют качественные и количественные нарушения биосинтеза белков. О том. какое значение могут иметь качественные изменения биосинтеза белков в патогенезе различных заболеваний, можно судить на примере некоторых видов анемий при появлении патологических гемоглобинов. Замена только одного аминокислотного остатка (глутамина) в молекуле гемоглобина на валин приводит к тяжелому заболеванию - серповидноклеточной анемии.

Особый интерес представляют количественные изменения в биосинтезе белков органов и крови, приводящие к сдвигу соотношений отдельных фракций белков в сыворотке крови - диспротеинемии. Выделяют две формы диспротеинемий: гиперпротеинемия (увеличение содержания всех или отдельных видов белков) и гипопротеинемия (уменьшение содержания всех или отдельных белков). Так, ряд заболеваний печени (цирроз, гепатит), почек (нефрит, нефроз) сопровождаются выраженным уменьшением содержания альбуминов. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению содержания γ-глобулинов.

Развитие диспротеинемии сопровождается, как правило, серьезными сдвигами в гомеостазе организма (нарушением онкотического давления, водного обмена). Значительное уменьшение синтеза белков, особенно альбуминов и γ-глобулинов, ведет к резкому снижению сопротивляемости организма к инфекции, снижению иммунологической устойчивости. Значение гипопротеинемии в форме гипоальбуминемии определяется еще и тем, что альбумин образует более или менее прочные комплексы с различными веществами, обеспечивая их транспорт между различными органами и перенос через клеточные мембраны при участии специфических рецепторов. Известно, что соли железа и меди (чрезвычайно токсичные для организма) при pH сыворотки крови трудно растворимы и транспорт их возможен только в виде комплексов со специфическими белками сыворотки (трансферрином и церулоплазмином), что предотвращает интоксикацию этими солями. Около половины кальция удерживается в крови в форме, связанной с альбуминами сыворотки. При этом в крови устанавливается определенное динамическое равновесие между связанной формой кальция и его ионизированными соединениями.

При всех заболеваниях, сопровождающихся снижением содержания альбуминов (заболевания почек) ослабляется и способность регулировать концентрацию ионизированного кальция в крови. Кроме того, альбумины являются носителями некоторых компонентов углеводного обмена (гликопротеиды) и основными переносчиками свободных (неэстерифицированных) жирных кислот, ряда гормонов.

При поражении печени и почек, некоторых острых и хронических воспалительных процессах (ревматизме, инфекционном миокардите, пневмонии) в организме начинают синтезироваться особые белки с измененными свойствами или несвойственные норме. Классическим примером болезней, вызванных наличием патологических белков, являются болезни, связанные с присутствием патологического гемоглобина (гемоглобинозы), нарушения свертывания крови при появлении патологических фибриногенов. К необычным белкам крови относятся криоглобулины, способные выпадать в осадок при температуре ниже 37 °С, что ведет к тромбообразованию. Появление их сопровождает нефроз, цирроз печени и другие заболевания.

Патология промежуточного белкового обмена (нарушение обмена аминокислот).

Основные пути промежуточного обмена белка - это реакции переаминирования, дезаминирования, амидирования, декарбоксилирования, переметилирования, пересульфирования.

Центральное место в промежуточном обмене белков занимает реакция переаминирования, как основной источник образования новых аминокислот.

Нарушение переаминирования может возникнуть в результате недостаточности в организме витамина В 6 . Это объясняется тем, что фосфорилированная форма витамина В 6 - фосфопиридоксаль - является активной группой трансаминаз - специфических ферментов переаминирования между амино- и кетокислотами. Беременность, длительный прием сульфаниламидов тормозят синтез витамина В 6 и могут послужить причиной нарушения обмена аминокислот.

Патологическое усиление реакции переаминирования возможно в условиях повреждения печени и инсулиновой недостаточности, когда значительно увеличивается содержание свободных аминокислот. Наконец, снижение активности переаминирования может произойти в результате угнетения активности трансаминаз из-за нарушения синтеза этих ферментов (при белковом голодании) либо нарушения регуляции их активности со стороны некоторых гормонов. Так, тирозин (незаменимая аминокислота), поступающий с белками пищи и образующийся из фенилаланина, частично окисляется в печени до фумаровой и ацетоуксусной кислот. Однако это окисление тирозина совершается только после его переампнирования с α-кетоглутаровой кислотой. При белковом истощении переаминирование тирозина заметно ослаблено, вследствие этого нарушено его окисление, что приводит к увеличению содержания тирозина в крови. Накопление тирозина в крови и выделение его с мочой могут быть связаны и с наследственно обусловленным дефектом тирозинаминотрансферазы. Клиническое состояние, развивающееся в результате этих нарушений, известно под названием «тирозиноз». Для болезни характерны цирроз печени, рахитоподобные изменения костей, геморрагии, поражения канальцев почек.

Процессы переаминирования аминокислот тесно связаны с процессами окислительного дезаминирования . в ходе которого происходит ферментативное отщепление аммиака от аминокислот. Дезаминирование определяет образование конечных продуктов белкового обмена и вступление аминокислот в энергетический обмен. Ослабление дезаминирования может возникнуть вследствие нарушения окислительных процессов в тканях (гипоксии, гиповитаминозов С, РР, В 2). Однако наиболее резкое нарушение дезаминирования наступает при понижении активности аминооксидаз либо вследствие ослабления их синтеза (диффузное поражение печени, белковая недостаточность), либо в результате относительной недостаточности их активности (увеличение содержания в крови свободных аминокислот). Вследствие нарушения окислительного дезаминирования аминокислот происходит ослабление мочевинообразования, повышение концентрации аминокислот и увеличение выведения их с мочой (аминоацидурия).

Промежуточный обмен ряда аминокислот совершается не только в форме переаминирования и окислительного дезаминирования, но и путем их декарбоксилирования (потеря СO 2 из карбоксильной группы) с образованием соответствующих аминов, получивших название «биогенные амины». Так, при декарбоксилировании гистидина образуется гистамин, тирозина - тирамин, 5-гидрокситриптофана - серотонин и т.д. Все эти амины биологически активны и оказывают выраженное фармакологическое действие на сосуды. Если в норме они образуются в малых количествах и довольно быстро разрушаются, то при нарушении декарбоксилирования складываются условия для накопления в тканях и крови соответствующих аминов и проявления их токсического действия. Причинами нарушения процесса декарбоксилирования могут служить усиление активности декарбоксилаз, торможение активности аминооксидаз и нарушение связывания аминов белками.

Изменение скорости распада белка.

Белки организма постоянно находятся в динамическом состоянии: в процессе непрерывного распада и биосинтеза. Нарушение условий, необходимых для реализации этого подвижного равновесия, также может привести к развитию обшей белковой недостаточности.

Обычно полупериод существования разных белков колеблется в пределах от нескольких часов до многих суток. Так, биологическое время уменьшения наполовину альбумина человеческой сыворотки составляет около 15 сут. Величина этого периода в значительной степени зависит от количества белков в пище: при уменьшении со держания белков он увеличивается, а при увеличении - уменьшается.

Значительное увеличение скорости распада белков тканей и крови наблюдается при повышении температуры организма, обширных воспалительных процессах, тяжелых травмах, гипоксии, злокачественных опухолях, что связано либо с действием бактериальных токсинов (в случае инфицирования), либо со значительным увеличением активности протеолитических ферментов крови (при гипоксии), либо токсическим действием продуктов распада тканей (при травмах). В большинстве случаев ускорение распада белков сопровождается развитием в организме отрицательного азотистого баланса в связи с преобладанием процессов распада белков над их биосинтезом.

Патология конечного этапа белкового обмена.

Основными конечными продуктами белкового обмена являются аммиак и мочевина. Патология конечного этапа белкового обмена может проявляться нарушением образования конечных продуктов либо нарушением их выведения.

Рис. 9.3. Схема нарушения синтеза мочевины

Связывание аммиака в тканях организма имеет большое физиологическое значение, так как аммиак обладает токсическим эффектом прежде всего в отношении центральной нервной системы, вызывая ее резкое возбуждение. В крови здорового человека его концентрация не превышает 517 мкмоль/л. Связывание и обезвреживание аммиака осуществляется при помощи двух механизмов: в печени путем образования мочевины , а в других тканях - путем присоединения аммиака к глутаминовой кислоте (посредством аминирования) с образованием глутамина .

Основным механизмом связывания аммиака является процесс образования мочевины в цитруллин-аргининорнитиновом цикле (рис. 9.3).

Нарушения образования мочевины могут наступить в результате снижения активности ферментных систем, участвующих в этом процессе (при гепатитах, циррозе печени), обшей белковой недостаточности. При нарушении мочевинообразования в крови и тканях накапливается аммиак и увеличивается концентрация свободных аминокислот, что сопровождается развитием гиперазотемии . При тяжелых формах гепатитов и цирроза печени, когда резко нарушена ее мочевинообразовательная функция, развивается выраженная аммиачная интоксикация (нарушение функции центральной нервной системы с развитием комы).

В основе нарушения образования мочевины могут лежать наследственные дефекты активности ферментов. Так, увеличение концентрации аммиака (аммониемия) в крови может быть связано с блокированием карбамил-фосфатсинтетазы и орнитинкарбомо-илтрансферазы. катализирующих связывание аммиака и образование орнитина. При наследственном дефекте аргининсукцинатсинтетазы в крови резко увеличивается концентрация цитруллина, в результате с мочой экскретируется цитруллин (до 15 г в сутки), т.е. развивается цитруллинурия .

В других органах и тканях (мышцы, нервная ткань) аммиак связывается в реакции амидирования с присоединением к карбоксильной группе свободных дикарбоновых аминокислот. Главным субстратом служит глутаминовая кислота. Нарушение процесса амидирования может происходить при снижении активности ферментных систем, обеспечивающих реакцию (глутаминаза), или в результате интенсивного образования аммиака в количествах, превосходящих возможности его связывания.

Другим конечным продуктом белкового обмена, образующимся при окислении креатина (азотистое вещество мышц), является креатинин . Нормальное суточное содержание креатинина в моче составляет около 1-2 г.

Креатинурия - повышение уровня креатинина в моче - наблюдается у беременных женщин и у детей в период интенсивного роста.

При голодании, авитаминозе Е, лихорадочных инфекционных заболеваниях, тиреотоксикозе и других заболеваниях, при которых наблюдаются нарушения обмена в мышцах, креатинурия свидетельствует о нарушении креатинового обмена.

Другая общая форма нарушения конечного этапа белкового обмена возникает при нарушении выведения конечных продуктов белкового обмена при патологии почек. При нефритах происходит задержка мочевины и других азотистых продуктов в крови, остаточный азот увеличивается и развивается гиперазотемия. Крайней степенью нарушения экскреции азотистых метаболитов является уремия.

При одновременном поражении печени и почек возникает нарушение образования и выделения конечных продуктов белкового обмена.

Наряду с общими нарушениями белкового обмена при белковой недостаточности могут возникать и специфические нарушения в обмене отдельных аминокислот. Например, при белковой недостаточности резко ослабляется функция ферментов, участвующих в окислении гистидина, а функция гистидиндекарбоксилазы, в результате действия которой из гистидина образуется гистамин, не только не страдает, но, наоборот, усиливается. Это влечет за собой значительное увеличение образования и накопления в организме гистамина. Состояние характеризуется поражением кожи, нарушением сердечной деятельности и функции желудочно-кишечного тракта.

Особое значение для медицинской практики имеют наследственные аминоацидопатии , число которых на сегодня составляет около 60 различных нозологических форм. По типу наследования почти все они относятся к аутосомно-рецессивным. Патогенез обусловлен недостаточностью того или иного фермента, осуществляющего катаболизм и анаболизм аминокислот. Общим биохимическим признаком аминоаиидопатий служит ацидоз тканей и аминоацидурия. Наиболее частыми наследственными дефектами обмена являются четыре вида энзимопатии, которые связаны между собой общим путем метаболизма аминокислот: фенилкетонурия, тирозинемия, альбинизм, алкаптонурия.